\(\widehat{C}=30^o\)

và đường cao BH. Chứng minh

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2019

a) Xét tam giác ABC và tam giác HBA có Góc ABC chungg,góc BHA=góc BAC=90 độ

=> Tam giác ABC đồng dạng với tam giác HBA(gg)=> \(\frac{AB}{HB}=\frac{BC}{AB}\)=> AB^2=BH.BC

1 tháng 4 2019

b)Tam giác ABC có BF là phân giác góc ABC=>\(\frac{BC}{AB}=\frac{FC}{AF}\)mà \(\frac{AB}{HB}=\frac{BC}{AB}\)=>\(\frac{AB}{BH}=\frac{FC}{AF}\left(1\right)\)

Tam giác ABH có BE là phân giác goc ABH =>\(\frac{BA}{BH}=\frac{AE}{EH}\left(2\right)\)

Từ 1 và 2=>\(\frac{FC}{AF}=\frac{AE}{EH}=>\frac{EH}{AE}=\frac{AF}{FC}\)

20 tháng 5 2019

Câu 1

Tứ giác

a, Vì tứ giác ABCD là hình thang

⇒ AB // CD

ΔCOD có AB // CD

⇒ ΔAOB ~ ΔCOD

\(\frac{OA}{OC}=\frac{OB}{OD}=\frac{AB}{CD}\)(đpcm)

b, Vì AB // CD ⇒ AM // CN

ΔCON có AM // CN

⇒ ΔAOM ~ ΔCON

\(\frac{OA}{OC}=\frac{OM}{ON}\)

\(\frac{OA}{OC}=\frac{AB}{CD}\)(câu a)

\(\frac{OM}{ON}=\frac{AB}{CD}\)

\(\frac{OM}{AB}=\frac{ON}{CD}\) (đpcm)

Câu 2

a, Vì ΔABC vuông tại A

\(\widehat{BAC}=90^0\)

Vì AH là đường cao của ΔABC

⇒ AH ⊥ BC

\(\widehat{H_1}=\widehat{H_2}=90^0\)

ΔABC và ΔHBA có

\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{H_1}=90^0\\\widehat{ABC}chung\end{matrix}\right.\)

⇒ ΔABC ~ ΔHBA (g.g)

\(\frac{AB}{HB}=\frac{BC}{AB}\) (1)

⇒ AB2 = BH . BC (đpcm)

b, ΔABC có BF là đường phân giác

\(\frac{BC}{AB}=\frac{FC}{FA}\) (2)

ΔABH có HE là đường phân giác

\(\frac{AB}{HB}=\frac{AE}{EH}\)(3)

Từ (1), (2), (3) ⇒ \(\frac{AE}{EH}=\frac{FC}{FA}\)

\(\frac{EH}{EA}=\frac{FA}{FC}\) (đpcm)

Chúc bTứ giácạn học tốt !!

20 tháng 5 2019
https://i.imgur.com/Ho1UJzh.jpg
9 tháng 2 2018

A A B B C C M M D D E E F F

a) Ta có : \(\frac{DF}{AM}=\frac{DC}{MC};\frac{DE}{AM}=\frac{BD}{MB}\)

\(\Rightarrow\frac{DE+DF}{AM}=\frac{BD}{BM}+\frac{DC}{MC}=\frac{BD+DC}{MC}=\frac{BC}{MC}=2\)

Vậy nên DE + DF = 2AM.

b) Theo định lý Ta let ta có:

\(\frac{AE}{AB}=\frac{DM}{BM}=\frac{DM}{MC}=\frac{AF}{AC}\)

\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)