Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABM và ΔCNM có
MA=MC
góc AMB=góc CMN
MB=MN
=>ΔABM=ΔCNM
b: AM=12/2=6cm
BM=căn 8^2+6^2=10cm
c: CN=AB
AB<BC
=>CN<BC
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABM và ΔCNM có
MA=MC
góc AMB=góc CMN
MB=MN
Do đó: ΔABM=ΔCNM
b:\(BM=2\cdot BN=2\cdot\sqrt{AB^2+AM^2}=2\cdot10=20\left(cm\right)\)
c: CN=AB
nên BC>CN
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ kéo dài đoạn thẳng BG cắt AC tại D.Vì 3 đường trung tuyến cùng đi qua 1 điểm nên BD là đường trung truyến của góc B.
- Xét tam giác ABC có góc A=90 độ, BI=CI nên AI=1/2 bc=4 cm
- Áp dụng định lý Py-ta-go cho tam giác ABC ta có: AB^2+AC^2=BC^2 suy ra AC= căn 39 nên AD=căn 39/2
- Áp dụng định lý Py-ta- go cho tam giác ABD có góc A= 90 độ suy ra AB^2+AD^2=BD^2 nên BD=139/2 suy ra BG=2/3BD suy ra BG=139/6
b/ Vì tam giác ABc vuông tại A nên góc C là góc nhọn suy ra góc BCN là góc tù suy ra góc CNB là góc nhọn suy ra BN> CN
vậy BA<CN<BN
BẠN TỰ VẼ HÌNH ĐI NHÉ.... NẾU THẤY ĐÚNG THÌ K CHO MÌNH VỚI
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔABC vuông tại A, có:
BC2=AB2+AC2 ( Định lý Py-Ta-Go)
(=) 102=AB2+82
(=) 100=AB2+64
(=) AB2= 36
(=) AB =6(cm) (do AB >0)
a) Áp dụng định lý Py ta go ta có :
BC2 =AB2 + AC2
=> AB2 = 100 - 64
=> AB = 6 cm
b) Xét ∆BAM và ∆DCM ta có :
BM = MD
AM = MC ( BM là trung tuyến)
BMA = CMD ( đối đỉnh)
=> ∆BAM = ∆DCM (c.g.c)
=> BAC = MCD = 90 độ
=> AC vuông góc với CD (dpcm)
=> AB = CD ( tg ứng )(dpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C M
CM :
a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
=> AB2 = BC2 - AC2 = 102 - 82 = 100 - 64 = 36
=> AB = 6 (cm)
b) Xét t/giác ABM và t/giác CDM
có: BM = MD (gt)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
AM = CM (gt)
=> t/giác ABM = t/giác CDM (c.g.c)
=> AB = CD (2 cạnh t/ứng)
=> \(\widehat{A}=\widehat{C}\) (2 góc t/ứng)
Mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CD
c) Xét t/giác ACD
Ta có: BC + CD > BD (bất đẳng thức t/giác)
Mà CD = AB và 2BM = BD (vì BD = BM + MD và BM = MD)
=> AB + BC > 2BM
d) Ta có: AB < BC (6 cm < 10cm)
Mà AB = CD
=> CD > BC => \(\widehat{MBC}< \widehat{D}\) (quan hệ giữa cạnh và góc đối diện)
Mà \(\widehat{D}=\widehat{ABM}\) (vì t/giác ABM = t/giác CDM)
=> \(\widehat{CBM}< \widehat{ABM}\)
Cho tam giác ABC vuông tại A có AB<AC,đường trung tuyến AM. Trên tia đối của tia AM lấy điểm D sao cho M là trung điểm AD.
a) chứng minh tam giác MAB= tam giác MDC và DC song song với AB
b) gọi K là trung điểm AC. Chứng minh tam giác BKD cân
c) DK cắt BC tại O. Chứng minh CO=2/3CM
d) BK cắt AD tại N. Chứng minh MK vuông góc với NO
a: Xét ΔABM và ΔCNM có
MA=MC
góc AMB=góc CMN
MB=MN
=>ΔABM=ΔCNM
b: AM=12/2=6cm
BM=căn 8^2+6^2=10cm
c: CN=AB
AB<BC
=>CN<BC