K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
10 tháng 4 2020
Bài làm
a) Xét tam giác AIB và tam giác CIK có:
AI = IC ( Do I là trung điểm AC )
\(\widehat{AIB}=\widehat{CIK}\)( Hai góc đối đỉnh )
BI = IK ( gt )
=> Tam giác AIB = tam giác CIK ( c.g.c )
=> \(\widehat{BAI}=\widehat{ICK}\left(=90^0\right)\)
=> IC vuông góc với CK.
b) Ta có: IC vuông góc với CK
=> AC vuông góc với CK
AC vuông góc với AB
=> CK // AB .
Xét tam giác AKB có:
N là trung điểm AK
I là tủng điể, BK
=> IN là đường trung bình.
=> IN // AB.
Xét tam giác BKC có:
I là trung điểm BK ( Do IB = IK )
M là trung điểm BC
=> IM là đường trung bình.
=> IM // CK
Mà AB // CK
=> IM // IN
Mà IM và IN trùng trung vì có chung I
=> M, I, N thẳng hàng. ( đpcm )
B A I C K
a) Xét ΔABI và ΔCKI có:
IA = IC (gt)
∠BIA = ∠KIC (đối đỉnh)
IB = IK (gt)
⇒ ΔABI = ΔCKI (c-g-c)
⇒ ∠BAI = ∠ICK ( cặp góc tương ứng). Mà ∠BAI là góc vuông nên ∠ICK cũng là góc vuông
Vậy IC \(\perp\) CK
b) Vì ΔABI = ΔCKI (c-g-c) nên AB = CK (cặp cạnh tương ứng)
Xét ΔABC và ΔCKA có:
AC: cạnh chung
∠BAI = ∠ACK (cmt)
AB = CK (cmt)
⇒ ΔABC = ΔCKA (c-g-c)
Vậy BC = AK ( cặp cạnh tương ứng)