Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C N M D E I H _Hinh anh chi mang tinh chat minh hoa_
Xét \(\Delta\)BMA và \(\Delta\)BMD có:
BAM=BDM (=90o)
BM: chung
ABM=DBM (BM: phân giác ABD)
\(\Rightarrow\)\(\Delta\)BMA=\(\Delta\)BMD (ch-gn)
\(\Rightarrow\)MA=MD (2 cạnh tương ứng)
\(\Rightarrow\Delta\)DMA cân tại M
Gọi I là giao điểm của BM và AD
Xét \(\Delta\)IMA và \(\Delta\)IMD có:
IMA=IMD (\(\Delta\)BMA=\(\Delta\)BMD)
MA=MD (\(\Delta\)DMA cân)
IAM=IDM (\(\Delta\)DMA cân tại M)
\(\Rightarrow\Delta\)IMA=\(\Delta\)IMD (g.c.g)
Xét \(\Delta\)CNE và \(\Delta\)CNA có:
CEN=CAN (=90o)
CN: chung
NCE=NCA ( CN: phân giác ACE)
\(\Rightarrow\) \(\Delta\)CNE=\(\Delta\)CNA (ch-gn)
\(\Rightarrow\)NE=NA (2 cạnh tương ứng)
\(\Rightarrow\Delta\)ANE cân tại N
Gọi giao điểm của CN và AE là H
Xét \(\Delta\)HNE và \(\Delta\)HNA có:
HNE=HNA (\(\Delta\)CNE=\(\Delta\)CNA)
NE=NA (\(\Delta\)ANE cân tại N)
HEN=HAN (\(\Delta\)ANE cân tại N)
\(\Rightarrow\Delta\)HNE=\(\Delta\)HNA (g.c.g)
Ta có:
AEN+AED=90o (EN\(\perp\)BC)
ADM+ADE=90o (MD\(\perp\)BC)
\(\Rightarrow\)AEN+AED+ADM+ADE=180o (*)
Lại có:
NAE+EAD+DAM=90o
Vì NAE=AEN (\(\Delta\)NHA=\(\Delta\)NHE), DAM=ADM (\(\Delta\)IMA=\(\Delta\)IMD)
\(\Rightarrow\)AEN+EAD+ADM=90o (**)
Lấy (*) trừ cho (**)
\(\Rightarrow\)DEA+ADE-EAD=90o
Mà DEA+ADE+EAD=180o (định lí tổng ba góc \(\Delta\))
\(\Rightarrow\)(DEA+ADE+EAD)-(DEA+ADE-EAD)=90o
\(\Rightarrow\)2EAD=90o
\(\Rightarrow\)EAD=45o (đpcm)
a.xét \(\Delta ABC\)vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)(1)
mà\(\widehat{ABD}=\widehat{DBC}=\frac{\widehat{B}}{2}\)(BD là tia phân giác của \(\widehat{B}\))(2)
và\(\widehat{ACE}=\widehat{ECB}=\frac{\widehat{C}}{2}\)(CE là tia phân giác của \(\widehat{C}\))(3)
từ(1)(2)(3)=>\(\widehat{DBC}+\widehat{ECB}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{90^0}{2}=45^0\)
Xét \(\Delta OBC\)có
\(\widehat{OBC}+\widehat{OCB}+\widehat{BOC}=180^0\)
Hay\(45^0+\widehat{BOC}=180^0=>\widehat{BOC}=180^0-45^0=135^0\)
b.xét\(\Delta ABD\)và\(\Delta MBD\)có
\(\widehat{ABD}=\widehat{MBD}\left(cmt\right)\)
BD chung
BA=BM(gt)
=>\(\Delta ABD=\Delta MBD\)(c.g.c)=>\(\widehat{BAD}=\widehat{DMB}\)(hai góc tương ứng)mà\(\widehat{BAD}=90^0=>\widehat{BMD}=90^0\)
Xét\(\Delta EAC\)và\(\Delta ENC\)có
EC chung
CA=CN(gt)
\(\widehat{ACE}=\widehat{NCE}\left(cmt\right)\)
=>\(\Delta EAC=\Delta NEC\)(c.g.c)=>\(\widehat{EAC}=\widehat{ANC}\)(2 góc tương ứng)mà\(\widehat{A}=90^0\)=>\(\widehat{ENC}=90^0\)
-ta có:\(EN\perp NM\left(\widehat{ENM}=90^0\right)\)(4)
\(DM\perp NM\left(\widehat{DMN}=90^0\right)\)(5)
Từ(4)và(5)=.>\(EN//DM\)(từ vuông góc đến song song)
c.xét\(\Delta ABO\)và\(\Delta MBO\)có
\(\widehat{ABO}=\widehat{MBO}\left(cmt\right)\)
AO cạnh chung
BA=BM(gt)
=>\(\Delta ABO=\Delta AMO\)(c.g.c)
=>\(\widehat{BOA}=\widehat{BOM}\)(2 góc tương ứng)mà\(\widehat{BOA}+\widehat{BOM}=180^0\)(kề bù)
=>\(\widehat{BOA}=\widehat{BOM}=\frac{180^0}{2}=90^0\)mà OA=OM (\(\Delta BAO=\Delta BMO\))
=>BO là đường trung trực của đoạn thẳng AM mà \(I\in BO\)(AN cắt BO tại I)
=>\(IA=IM\)=>\(\Delta IAM\)cân
A B C M N Q P O R S T A B C H M D I A B C D K G M K E P F (Hình a) (Hình b) (Hình c) Q I
Bài toán 1: (Hình a)
Gọi đường thẳng qua N vuông góc với AN cắt AC tại R, qua P kẻ đường thẳng song song với BC. Đường thẳng này cắt AM,AN,BC lần lượt tại S,T,K.
Ta thấy \(\Delta\)APR có AN vừa là đường cao, đường phân giác => \(\Delta\)APR cân tại A => AP = AR, NP = NR
Áp dụng hệ quả ĐL Thales \(\frac{BM}{PS}=\frac{CM}{KS}\left(=\frac{AM}{AS}\right)\)=> PS = KS
Áp dụng ĐL đường phân giác trong tam giác: \(\frac{TK}{TP}=\frac{AK}{AP}\Rightarrow\frac{ST+SK}{TP}=\frac{AK}{AR}\)
\(\Rightarrow\frac{2ST+PT}{TP}=\frac{AR+RK}{AR}\Rightarrow\frac{2ST}{TP}=\frac{RK}{AR}\)
Dễ thấy NS là đường trung bình của \(\Delta\)RKP => RK = 2NS. Do đó \(\frac{ST}{TP}=\frac{NS}{AR}\)
Đồng thời NS // AR, suy ra \(\frac{ST}{TP}=\frac{NS}{AR}=\frac{SQ}{QA}\)=> QT // AP (ĐL Thaels đảo)
Mà AP vuông góc PO nên QT vuông góc PO. Từ đây suy ra T là trực tâm của \(\Delta\)POQ
=> QO vuông góc PT. Lại có PT // BC nên QO vuông góc BC (đpcm).
Bài toán 2: (Hình b)
Ta có IB = IC => \(\Delta\)BIC cân tại I => ^IBC = ^ICB = ^ACB/2 => \(\Delta\)MCI ~ \(\Delta\)MBC (g.g)
=> MC2 = MI.MB. Xét \(\Delta\)AHC có ^AHC = 900 , trung tuyến HM => HM = MC
Do đó MH2 = MI.MB => \(\Delta\)MIH ~ \(\Delta\)MHB (c.g.c) => ^MHI = ^MBH = ^MBC = ^MCI
=> Tứ giác CHIM nội tiếp. Mà CI là phân giác ^MCH nên (IH = (IM hay IM = IH (đpcm).
Bài toán 3: (Hình c)
a) Gọi đường thẳng qua C vuông góc CB cắt MK tại F, DE cắt BC tại Q, CG cắt BD tại I.
Áp dụng ĐL Melelaus:\(\frac{MB}{MC}.\frac{GA}{GB}.\frac{DC}{DA}=1\)suy ra \(\frac{DC}{DA}=2\)=> A là trung điểm DC
Khi đó G là trọng tâm của \(\Delta\)BCD. Do CG cắt BD tại I nên I là trung điểm BD
Dễ thấy \(\Delta\)BCD vuông cân tại B => BI = CM (=BC/2). Từ đó \(\Delta\)IBC = \(\Delta\)MCF (g.c.g)
=> CB = CF => \(\Delta\)BCF vuông cân ở C => ^CBA = ^CBF (=450) => B,A,F thẳng hàng
=> CA vuông góc GF. Từ đó K là trực tâm của \(\Delta\)CGF => GK vuông góc CF => GK // CM
Theo bổ đề hình thang thì P,Q lần lượt là trung điểm GK,CM. Kết hợp \(\Delta\)CEM vuông ở E
=> EQ=CM/2. Áp dụng ĐL Melelaus có \(\frac{GD}{GM}.\frac{EQ}{ED}.\frac{CM}{CQ}=1\)=> \(\frac{EQ}{ED}=\frac{1}{4}\)
=> \(\frac{ED}{CM}=2\)=> DE = 2CM = BC (đpcm).
b) Theo câu a thì EQ là trung tuyến của \(\Delta\)CEM vuông tại E => EQ = QC => ^QEC = ^QCE
Vì vậy ^PEG = ^QEC = ^QCE = ^PGE => \(\Delta\)EPG cân tại P => PG = PE (đpcm).
Tam giác NAC vuông tại N có:
NAC + NCA = 900
NAC = 900 - NCA
Ta có:
MAB + BAC + CAN = MAN
MAB + 900 + 900 - NCA = 1800
MAB = 1800 - 900 - 900 + NCA
MAB = NCA
Xét tam giác MAB vuông tại M và tam giác NCA vuông tại N có:
AB = AC (gt)
MAB = NCA (chứng minh trên)
=> Tam giác MAB = Tam giác NCA (cạnh huyền - góc nhọn)
=> MA = NC (2 cạnh tương ứng)
AN = BM (2 cạnh tương ứng)
=> MA + AN = NC + BM
hay MN = NC + BM
Tam giác ABC vuông tại A
mà AB = AC (gt)
=> Tam giác ABC vuông cân tại A
=> ABC = ACB = 450
a, Xét tam giác ABH và tam giác ACH có
góc bah =góc cah
ab =ac
góc B = góc C
=> tam giác abh = tam giác ach (g.c.g)
=>hb=hc
=>góc ahb = góc ahc
Mà góc AHB + góc AHC=180 độ
=>ah vuông góc với bc
b,bh=hc=36:2=18cm
áp dụng định lí PY-TA-GO vào tam giác ABH ta có
ab^2=ah^2+bh^2
=>ah^2=ab^2-bh^2
=>ah=24cm
a) xét tam giác BAH và tam giác HAC có:
AB = AC (gt)
góc A1 = góc A2 ( vì AH là p/giác)
AH chung
=> tam giác BAH = tam giác HAC ( c.g.c)
=> HB = HC
ta có: góc AHB + góc AHC = 1800 ( kề bù)
=> 2 góc AHB = 1800
=> góc AHB = \(\frac{180^0}{2}=90^0\)
=> AH vuông góc BC