Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) t/g MCK = t/g ACK (c.g.c)
=> CMK = CAK (2 góc t/ứ)
t/g BAN cân tại A (AB = BN) => BAN = BNA (t/c tam giác cân)
Mà: BAN + CAK = BAC = 90o nên BNA + CMK = 90o
hay MNK + NMK = 90o
từ đó => MKN = 90o
=> MK _|_ AN; BD _|_ AN
=> MK // BD (đpcm)
giúp mình với nhé mai mình thi cuối học kì I môn toán rồi. Chúc các bạn có một kì thi tốt đẹp.
đề bài sai à
câu a tam giác vuông tại A mà góc B = 90o suy ra góc C = 0o à
a.xét \(\Delta ABC\)vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)(1)
mà\(\widehat{ABD}=\widehat{DBC}=\frac{\widehat{B}}{2}\)(BD là tia phân giác của \(\widehat{B}\))(2)
và\(\widehat{ACE}=\widehat{ECB}=\frac{\widehat{C}}{2}\)(CE là tia phân giác của \(\widehat{C}\))(3)
từ(1)(2)(3)=>\(\widehat{DBC}+\widehat{ECB}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{90^0}{2}=45^0\)
Xét \(\Delta OBC\)có
\(\widehat{OBC}+\widehat{OCB}+\widehat{BOC}=180^0\)
Hay\(45^0+\widehat{BOC}=180^0=>\widehat{BOC}=180^0-45^0=135^0\)
b.xét\(\Delta ABD\)và\(\Delta MBD\)có
\(\widehat{ABD}=\widehat{MBD}\left(cmt\right)\)
BD chung
BA=BM(gt)
=>\(\Delta ABD=\Delta MBD\)(c.g.c)=>\(\widehat{BAD}=\widehat{DMB}\)(hai góc tương ứng)mà\(\widehat{BAD}=90^0=>\widehat{BMD}=90^0\)
Xét\(\Delta EAC\)và\(\Delta ENC\)có
EC chung
CA=CN(gt)
\(\widehat{ACE}=\widehat{NCE}\left(cmt\right)\)
=>\(\Delta EAC=\Delta NEC\)(c.g.c)=>\(\widehat{EAC}=\widehat{ANC}\)(2 góc tương ứng)mà\(\widehat{A}=90^0\)=>\(\widehat{ENC}=90^0\)
-ta có:\(EN\perp NM\left(\widehat{ENM}=90^0\right)\)(4)
\(DM\perp NM\left(\widehat{DMN}=90^0\right)\)(5)
Từ(4)và(5)=.>\(EN//DM\)(từ vuông góc đến song song)
c.xét\(\Delta ABO\)và\(\Delta MBO\)có
\(\widehat{ABO}=\widehat{MBO}\left(cmt\right)\)
AO cạnh chung
BA=BM(gt)
=>\(\Delta ABO=\Delta AMO\)(c.g.c)
=>\(\widehat{BOA}=\widehat{BOM}\)(2 góc tương ứng)mà\(\widehat{BOA}+\widehat{BOM}=180^0\)(kề bù)
=>\(\widehat{BOA}=\widehat{BOM}=\frac{180^0}{2}=90^0\)mà OA=OM (\(\Delta BAO=\Delta BMO\))
=>BO là đường trung trực của đoạn thẳng AM mà \(I\in BO\)(AN cắt BO tại I)
=>\(IA=IM\)=>\(\Delta IAM\)cân