Cho ΔABC vuông tại A, kẻ đường cao AH. Biết BC = 5cm, 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2023

Ta có:

\(sinC=\dfrac{AB}{BC}\Rightarrow sin30^o=\dfrac{AB}{5}\)

\(\Rightarrow AB=5\cdot sin30^o=\dfrac{5}{2}\left(cm\right)\) 

Mà: \(tanC=\dfrac{AB}{AC}\Rightarrow tan30^o=\dfrac{\dfrac{5}{2}}{AC}\)

\(\Rightarrow AC=\dfrac{\dfrac{5}{2}}{tan30^o}=\dfrac{5\sqrt{3}}{2}\left(cm\right)\) 

Theo hệ thức đường cao cạnh góc vuông và cạnh huyền ta có:

\(AB\cdot AC=AH\cdot BC\)

\(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{\dfrac{5}{2}\cdot\dfrac{5\sqrt{3}}{2}}{5}=\dfrac{5\sqrt{3}}{4}\left(cm\right)\)

Ta có: \(\left\{{}\begin{matrix}HB=\dfrac{AB^2}{BC}=\dfrac{\left(\dfrac{5}{2}\right)^2}{5}=\dfrac{5}{4}\left(cm\right)\\HC=\dfrac{AC^2}{BC}=\dfrac{\left(\dfrac{5\sqrt{3}}{2}\right)^2}{5}=\dfrac{15}{4}\left(cm\right)\end{matrix}\right.\)   

8 tháng 10 2023

loading... a) ∠ABC = 90⁰ - 30⁰ = 60⁰

sinC = AB/BC

⇒ AB = BC.sinC

= 5.sin30⁰

= 5.1/2

= 5/2 (cm)

sinB = AC/BC

⇒ AC = BC.sinB

= 5.sin60⁰

= 5√3/2 (cm)

Ta có:

AH.BC = AB.AC

⇒ AH = AB.AC : BC

= 5/2 . 5√3/2 : 5

= 5√3/4 (cm)

AB² = BH.BC

⇒ BH = AB² : BC

= (5/2)² : 5

= 5/4 (cm)

⇒ CH = BC - BH

= 5 - 5/4

= 15/4 (cm)

b) Do AH ⊥ BC (gt)

⇒ CH ⊥ AM

∆ACM vuông tại C có CH là đường cao

⇒ AC² = AH . AM (1)

∆ABC vuông tại A có AH là đường cao

⇒ AC² = CH . CB (2)

Từ (1) và (2) ⇒ AH.AM = CH.CB

27 tháng 7 2016

vì a+b+c=0==> x=-(y+z) ==> \(x^2=\left(y+z\right)^2\)

<=> \(x^2=y^2+2yz+z^2\)

<=> \(x^2-y^2-z^2=2yz\)

<=> \(\left(x^2-y^2-z^2\right)^2=4y^2z^2\)

<=>\(x^4+y^4+z^4=2x^2y^2+2y^2z^2+2z^2x^2\)

<=> \(2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2=a^4\)

==> \(x^4+y^4+z^4=\frac{a^4}{2}\)

12 tháng 4 2018

a) Chứng minh tích BD.CEBD.CE không đổi.

Xét hai tam giác: ΔBOD∆BOD và ΔCEO∆CEO, ta có: ˆB=ˆC=600B^=C^=600 (gt) (1)

Ta có ˆDOCDOC^ là góc ngoài của ΔBDO∆BDO nên: ˆDOC=ˆB+ˆD1DOC^=B^+D^1

hay ˆO1+ˆO2=ˆB+ˆD1600+ˆO2=600+ˆD1O1^+O2^=B^+D1^⇔600+O2^=600+D1^

ˆO2=ˆD1(2)⇔O2^=D1^(2) 

Từ (1) và (2) ΔBOD⇒∆BOD đồng dạng ΔCEO∆CEO (g.g)

BDBO=COCEBD.CE=BO.CO⇒BDBO=COCE⇒BD.CE=BO.CO

hay BD.CE=BC2.BC2=BC24BD.CE=BC2.BC2=BC24 (không đổi)

Vậy BD.CE=BC24BD.CE=BC24 không đổi

b) Chứng minh ΔBODΔBOD đồng dạng ΔOEDΔOED

Từ câu (a) ta có: ΔBOD∆BOD đồng dạng ΔCEO∆CEO

ODOE=BDOC=BDOB⇒ODOE=BDOC=BDOB (do OC=OBOC=OB)

Mà ˆB=ˆDOE=600B^=DOE^=600 

Vậy ΔBODΔBOD đồng dạng ΔOEDΔOED (c.g.c) ˆBDO=ˆODE⇒BDO^=ODE^  

hay DODO là tia phân giác của góc BDEBDE

c) Vẽ OKDEOK⊥DE và gọi II là tiếp điểm của (O)(O) với ABAB, khi đó OIABOI⊥AB. Xét hai tam giác vuông: IDOIDO và KDOKDO, ta có:

 

DODO chung

ˆD1=ˆD2D1^=D2^ (chứng minh trên)

Vậy ΔIDOΔIDO = ΔKDOΔKDOOI=OK⇒OI=OK

Điều này chứng tỏ rằng OKOK là bán kính của (O)(O) và OKDEOK⊥DE nên KK là tiếp điểm của DEDE với (O)(O)hay DEDE tiếp xúc với đường tròn (O)

3 tháng 6 2016

đề lạ wa mk nhìn chẳng hỉu

18 tháng 8 2016

bạn viết lại đề bài theo công thức nha, chả hiểu đề bài viết gì mà làm.