Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: O là tâm đường tròn ngoại tiếp ΔABC
nên OA=OB=OC
Ta có: ΔBAC vuông tại A
nên A nằm trên đường tròn đường kính BC
=>O thuộc BC
b: Sửa đề: \(\widehat{AOB}=2\cdot\widehat{BCA}=2\cdot\widehat{BDA}\)
Xét (O) có
góc BCA là góc nội tiếp chắn cung BA
góc BDA là góc nội tiếp chắn cung BA
Do đó: \(\widehat{BCA}=\widehat{BDA}\left(1\right)\)
Xét ΔOAC có OA=OC
nên ΔOAC cân tại O
=>\(\widehat{OAC}=\widehat{OCA}\)
=>\(\widehat{AOB}=2\cdot\widehat{BCA}\)(2)
Từ (1) và (2) suy ra \(\widehat{AOB}=2\cdot\widehat{BCA}=2\cdot\widehat{BDA}\)
c: Xét (O) có
góc AOD là góc ở tâm chắn cung AD
góc ACD là góc nội tiếp chắn cung AD
Do đó: \(\widehat{AOD}=2\cdot\widehat{ACD}\)
Tự vẽ hình
a, Do tam giác ABC cân tại A ( gt )
=> AB = AC ; ABC = ACB ( tính chất tam giác cân)
Xét tam giác ABD và tam giác ACE có :
Góc BAC chung
AB = AC ( cmt )
ADB = AEC ( = 90 độ )
=> Tam giác ABD = ACE ( cạnh huyền - góc nhọn )
=> ABD = ACE ( 2 góc tương ứng )
AD = AE ( 2 cạnh tương ứng )
=> Tam giác ADE cân tại A ( định nghĩa tam giác cân )
=> ADE = AED ( tính chất tam giác cân )
Trong tam giác ABC có : ABC + ACB + BAC = 180 độ ( Tổng 3 góc của 1 tam giác )
Trong tam giác AED có : AED + ADE + BAC = 180 độ ( tổng 3 góc của 1 tam giác )
=> ABC + ACB = AED + ADE
Mà ABC = ACB ; AED = ADE ( cmt )
=> 2.ABC = 2.AED => ABC = AED
Mà 2 góc này ở vị trí đồng vị => DE // BC ( Dấu hiệu nhận biết 2 đường thẳng song song )
Vậy DE // BC
b, Ta có : AE + BE = AB
AD + CD = AC
Mà AE = AD ; AB = AC ( cmt ) => BE = CD
Xét tam giác EOB và tam giác DOC có :
BDC = CEB ( = 90 độ )
BE = CD ( cmt )
ABD = ACE ( cmt )
=> tam giác EOB = DOC ( g.c.g )
=> OE = OD ( 2 cạnh tương ứng )
Vậy tam giác EOB = DOC
c, Ta có : AE = AD ( cmt ) => A nằm trên đường trung trực của đoạn thẳng DE
OE = OD ( cmt ) => O nằm trên đường trung trực của đoạn thẳng DE
=> AO là trung trực của đoạn thẳng DE
Vậy AO là trung trực của đoạn thẳng DE
d, Vì AO là trung trực của đoạn thẳng DE ( cmt )
=> AO // DE ( t/c đường trung trực )
Mà DE // BC ( cmt ) => AO vuông góc với BC ( từ vuông góc đến song song )
Xét tam giác ABC cân tại A có AH là đường trung tuyến
=> AH đồng thời là đường cao ứng với cạnh BC ( t/c tam giác cân )
=> AH vuông góc với BC
=> AH và AO trùng nhau => A,H,O thẳng hàng ( đpcm )
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau