K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: O là tâm đường tròn ngoại tiếp ΔABC 

nên OA=OB=OC

Ta có: ΔBAC vuông tại A

nên A nằm trên đường tròn đường kính BC

=>O thuộc BC

b: Sửa đề: \(\widehat{AOB}=2\cdot\widehat{BCA}=2\cdot\widehat{BDA}\)

Xét (O) có

góc BCA là góc nội tiếp chắn cung BA

góc BDA là góc nội tiếp chắn cung BA

Do đó: \(\widehat{BCA}=\widehat{BDA}\left(1\right)\)

Xét ΔOAC có OA=OC

nên ΔOAC cân tại O

=>\(\widehat{OAC}=\widehat{OCA}\)

=>\(\widehat{AOB}=2\cdot\widehat{BCA}\)(2)

Từ (1) và (2) suy ra \(\widehat{AOB}=2\cdot\widehat{BCA}=2\cdot\widehat{BDA}\)

c: Xét (O) có

góc AOD là góc ở tâm chắn cung AD

góc ACD là góc nội tiếp chắn cung AD

Do đó: \(\widehat{AOD}=2\cdot\widehat{ACD}\)

9 tháng 10 2017

trả lời dùm mik ik các bn

2 tháng 11 2017

mk ko giai dc

5 tháng 2 2020

Tự vẽ hình

a, Do tam giác ABC cân tại A ( gt )
=> AB = AC ; ABC = ACB  ( tính chất tam giác cân)
Xét tam giác ABD và tam giác ACE có :

Góc BAC chung

AB = AC ( cmt ) 
ADB = AEC ( = 90 độ )
=> Tam giác ABD = ACE ( cạnh huyền - góc nhọn )
=> ABD = ACE ( 2 góc tương ứng )

AD = AE ( 2 cạnh tương ứng )
=> Tam giác ADE cân tại A ( định nghĩa tam giác cân )
 => ADE = AED ( tính chất tam giác cân )
Trong tam giác ABC có : ABC + ACB + BAC = 180 độ ( Tổng 3 góc của 1 tam giác )
Trong tam giác AED có : AED + ADE + BAC = 180 độ ( tổng 3 góc của 1 tam giác ) 
=> ABC + ACB = AED + ADE 
Mà ABC = ACB ; AED = ADE ( cmt ) 
=> 2.ABC = 2.AED => ABC = AED
Mà 2 góc này ở vị trí đồng vị => DE // BC ( Dấu hiệu nhận biết 2 đường thẳng song song )
Vậy DE // BC
b, Ta có : AE + BE = AB
AD + CD = AC
Mà AE = AD ; AB = AC ( cmt ) => BE = CD
Xét tam giác EOB và tam giác DOC có : 
BDC = CEB ( = 90 độ )
BE = CD ( cmt )
ABD = ACE ( cmt ) 
=> tam giác EOB = DOC ( g.c.g )
=> OE = OD ( 2 cạnh tương ứng ) 
Vậy tam giác EOB = DOC
c, Ta có : AE = AD ( cmt ) => A nằm trên đường trung trực của đoạn thẳng DE
OE = OD ( cmt ) => O nằm trên đường trung trực của đoạn thẳng DE
=> AO là trung trực của đoạn thẳng DE
Vậy AO là trung trực của đoạn thẳng DE
d, Vì AO là trung trực của đoạn thẳng DE ( cmt ) 
=> AO // DE ( t/c đường trung trực )
Mà DE // BC ( cmt ) => AO vuông góc với BC ( từ vuông góc đến song song )
Xét tam giác ABC cân tại A có AH là đường trung tuyến 
=> AH đồng thời là đường cao ứng với cạnh BC ( t/c tam giác cân )
=> AH vuông góc với BC 
=> AH và AO trùng nhau => A,H,O thẳng hàng ( đpcm )

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau