Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+9^2=117\)
hay \(BC=3\sqrt{13}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AB\cdot AC=AH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{12\sqrt{13}}{13}\left(cm\right)\\CH=\dfrac{27\sqrt{13}}{13}\left(cm\right)\\AH=\dfrac{18\sqrt{13}}{13}\left(cm\right)\end{matrix}\right.\)
a.
$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm) theo định lý Pitago
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=3,6$ (cm) theo định lý Pitago
$CH=BC-BH=10-3,6=6,4$ (cm)
b.
Áp dụng HTL trong tam giác vuông:
$AH^2=BH.CH$
$\Rightarrow BH=\frac{AH^2}{CH}=\frac{AH^2}{CH}=\frac{9,6^2}{12,8}=7,2$ (cm)
$BC=BH+CH=7,2+12,8=20$ (cm)
$AB=\sqrt{AH^2+BH^2}=\sqrt{9,6^2+7,2^2}=12$ (cm) theo Pitago
$AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-12^2}=16$ (cm) theo Pitago
c.
$AB.AC=AH.BC=12.25=300$
$AB^2+AC^2=BC^2=625$
$(AB+AC)^2-2AB.AC=625$
$AB+AC=\sqrt{625+2AB.AC}=\sqrt{625+2.300}=35$
Áp dụng Viet đảo thì $AB,AC$ là nghiệm của:
$X^2-35X+300=0$
$\Rightarrow (AB,AC)=(20,15)$ (giả sử $AB>AC$)
$BH=\sqrt{AB^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)
$CH=\sqrt{AC^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm)
a)AB=6cm,BC=10cm
∆ABC vuông tại A đg cao AH có
#\(AC^2=BC^2-AB^2\)
AC2=100-36=64
AC=8cm
# \(AB^2=BH.BC\)
36=BH.10
BH=3,6cm
# CH=BC-BH=10-3,6=6,4cm
# \(AH^2=BH.CH\)
AH2=3,6.6,4=23,04
AH=4,8cm
b)
∆ABC vuông tại A đg cao AH có
#\(AB^2=BC^2-AC^2\)
AB2=625-400=225
AB=15cm
# \(AB^2=BH.BC\)
225=BH.25
BH=9cm
# CH= BC-BH=25-9=16cm
# \(AH.BC=AB.AC\)
AH.25=15.20=300
AH=12cm
a) Áp dụng định lí Pytago trong \(\Delta\) AHC vuông tại H ta có :
\(AH^2+HC^2=AC^2\)
\(\Rightarrow HC^2=AC^2-AH^2\)
\(\Rightarrow HC=\sqrt{AC^2-AH^2}=\sqrt{40^2-24^2}=32cm\)
b) Áp dụng định lí Pytago trong \(\Delta\) AHC vuông tại H ta có :
\(AH^2+HC^2=AC^2\)
\(\Rightarrow AC=\sqrt{AH^2+HC^2}=\sqrt{9,6^2+12,8^2}=16cm\)
c) \(BC=CH+BH=72+12,5=84,5\left(cm\right)\)
Ta có: \(\left\{{}\begin{matrix}AB^2=BH.BC=12,5.84,5=1056,25\\AC^2=CH.BC=72.84,5=6084\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{65}{2}\left(cm\right)\\AC=78\left(cm\right)\end{matrix}\right.\)
Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{78.\dfrac{65}{2}}{84,5}=30\left(cm\right)\)
\(a,\)Áp dụng hệ thức lượng trong tam giác vuông ABC ta có
\(BC^2=AB^2+AC^2\Rightarrow BC^2=3^2+4^2\Rightarrow BC=\sqrt{9+16}\)
\(\Rightarrow BC=5cm\)
\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}\Rightarrow BH=\frac{3^2}{5}=\frac{9}{5}cm\)
\(AC^2=CH.BC\Rightarrow CH=\frac{AC^2}{BC}\Rightarrow CH=\frac{4^2}{5}=\frac{16}{5}cm\)
\(AH^2=\frac{9}{5}.\frac{16}{5}\Rightarrow AH^2=\frac{144}{25}\Rightarrow AH=\sqrt{\frac{144}{25}}=\frac{12}{5}cm\)
\(b,\)
\(BC=BH+CH\Rightarrow BC=9+16\Rightarrow BC=25cm\)
\(AB^2=BH.BC\Rightarrow AB^2=9.25\Rightarrow AB=\sqrt{225}=15cm\)
\(AC^2=CH.BC\Rightarrow AC^2=16.25\Rightarrow AC=\sqrt{400}=20cm\)
\(AH^2=BH.CH\Rightarrow AH^2=9.16\Rightarrow AH=\sqrt{144}=12cm\)
a: \(BC=\sqrt{6^2+9^2}=3\sqrt{17}\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{36}{3\sqrt{17}}=\dfrac{12}{\sqrt{17}}\left(cm\right)\)
\(HC=\dfrac{AC^2}{BC}=\dfrac{81}{3\sqrt{17}}=\dfrac{27}{\sqrt{17}}\left(cm\right)\)
b: \(AH=\sqrt{15^2-9^2}=12\left(cm\right)\)
\(BC=\dfrac{AB^2}{BH}=25\left(cm\right)\)
CH=BC-BH=16(cm)
c: \(AB=\sqrt{55^2-44^2}=33\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=26.4\left(cm\right)\)
\(BH=\dfrac{33^2}{55}=19.8\left(cm\right)\)