\(\frac{1}{2}BC\).

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2015

viết sai ai mà giải được đi kêu thánh xuống mà giải

23 tháng 3 2017

Trên tia đối của MA lấy điểm D sao cho MD=MA

xét tam giác AMB và tam giác DMC có:

MB=MC(gt)

góc AMB=DMC(2 góc đối đỉnh)

MA=MD( do cách vẽ)

=>tam giác AMB=DMC(c-g-c)

=> AB=DC và góc BAM=MDC=>AB//CD( vì có cặp góc so le trong bằng nhau)

vì AC vuông góc AB(gt) nên AC vuông góc vs CD( quan hệ giữa tính song song và vuông góc)

 xét tam giác ABC và CDA có

AB=CD  9(cmt)

góc A=C=90 độ

AC chung

=> tam giác ABC=CDA(c-g-c) suy raBC=AD. Vì AM=1/2AD nên AM=1/2BC

27 tháng 2 2020

a, tam giác ABC cân tại A (gt)

=> góc B = (180 - góc A) : 2

góc A = 50 (gt)

=> góc B = (180 - 50) : 2 

=> góc B = 65

b, xét tam giác AMB và tam giác AMC có : AB = AC do tam giác ABC cân tại A (gt)

góc ABC = góc ACB do tam giác ABC cân tại A (gT)

BM = MC do M là trđ của BC (gt)

=> tam giác AMB = tam giác AMC (c-g-c)

=> góc AMB = góc AMC (đn)

mà góc AMB + góc AMC = 180 (kb)

=> góc AMB = 90

=> AM _|_ BC (đn)

b, tam  giác AMB = tam giác AMC (Câu b)

=> góc MAB = góc MAC (đn) mà AM nằm giữa AB và AC 

=> AM là pg của góc BAC (đn)

27 tháng 2 2020

A B C M 1 1 2 2

A)VÌ \(\Delta ABC\)CÂN TẠI A

\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

XÉT TAM GIÁC ABC

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(đ/l\right)\)

THAY\(50^o+\widehat{B}+\widehat{C}=180^o\)

                        \(\widehat{B}+\widehat{C}=130^o\)

\(\widehat{B}=\widehat{C}\)

THAY \(\widehat{C}+\widehat{C}=130^o\)

      \(2\widehat{C}=130^o\)

\(\widehat{C}=130^o:2=65^o\)     

\(\Rightarrow\widehat{B}=\widehat{C}=65^o\)

B)XÉT\(\Delta BAM\)\(\Delta CAM\)

  \(BA=CA\left(GT\right)\)

    \(\widehat{B}=\widehat{C}\left(GT\right)\)

\(BM=CM\left(GT\right)\)

\(\Rightarrow\Delta BAM=\Delta CAM\left(C-G-C\right)\)

\(\Rightarrow\widehat{M_1}=\widehat{M_2}\)HAI GÓC TƯƠNG ỨNG

MÀ \(\widehat{M_1}+\widehat{M_2}=180^o\left(KB\right)\)

THAY\(\widehat{M_2}+\widehat{M_2}=180^o\)

\(2\widehat{M_2}=180^o\)

\(\widehat{M_2}=180^o:2=90^o\)

VẬY \(AM\perp BC\left(đpcm\right)\)

c) \(AM\perp BC\left(cmt\right)\)

=> AM LÀ ĐƯƠNG CAO CỦA TAM GIÁC ABC

TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG CHÍNH LÀ ĐƯỜNG PHÁP TUYẾN,PHÂN GIÁC,TRUNG TUYẾN

=> AM LÀ PHÂN GIÁC CỦA\(\widehat{BAC}\)

24 tháng 10 2016

Ta có hình vẽ sau:

 

A B C D M 1 2

GT: ΔABC ; \(\widehat{A}\) = 90o

MB = MC ; MA = MD

KL: a) ΔAMB = DMC

a) Xét ΔAMB và ΔDMC có:

MA = MD (gt)

\(\widehat{M_1}\) = \(\widehat{M_2}\) ( 2 góc đối đỉnh)

MB = MC (gt)

\(\Rightarrow\) ΔAMB = ΔDMC ( cạnh - góc-cạnh)

 

24 tháng 10 2016

ý b vs ý c mk chua nghĩ ra

hỳ

4 tháng 11 2016

GT: Δ ABC vuông tại A

BM = CM

D ϵ tia đối của tia MA sao cgo MA = MD

KL: AD = BC

\(AM=\frac{1}{2}BC\)

Ta có hình vẽ:

A B C M D

Nối đoạn BD

Xét Δ BMD và Δ CMA có:

BM = CM (gt)

BMD = CMA (đối đỉnh)

MD = MA (gt)

Do đó, Δ BMD = Δ CMA (c.g.c)

=> BD = AC (2 cạnh tương ứng) và BDM = MAC (2 góc tương ứng)

Mà BDM và MAC là 2 góc so le trong nên BD // AC

=> BAC + ABD = 180o (trong cùng phía)

=> 90o + ABD = 180o

=> ABD = 180o - 90o = 90o = BAC

Xét Δ ABD và Δ BAC có:

BD = AC (cmt)

ABD = BAC = 90o

AB là cạnh chung

Do đó, Δ ABD = Δ BAC (c.g.c)

=> AD = BC (2 cạnh tương ứng) (1)

Mà AM = MD = \(\frac{1}{2}AD\) (2)

Từ (1) và (2) => \(AM=\frac{1}{2}BC\left(đpcm\right)\)

4 tháng 11 2016

Tứ giác ABCD có M là trung điểm của BC và AD

=> Tứ giác ABCD là hình bình hành có góc A=900

=> Hình bình hành ABCD là hình chữ nhật.

=> AD=BC

=> AM=DM=BM=CM

Mà BM + MC = BC

=> AM= 1/2 BC