\(\dfrac{AB}{AC}\) = \(\dfrac{3}{4}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

Ta có \(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}AC\)

Ta lại có △ABC vuông tại A đường cao AH\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{225}=\dfrac{16}{9AC^2}+\dfrac{1}{AC^2}=\dfrac{25}{9AC^2}\Leftrightarrow AC^2=625\Leftrightarrow AC=25\left(cm\right)\)

Ta có △ACH vuông tại H\(\Rightarrow AC^2=AH^2+CH^2\Rightarrow CH^2=AC^2-AH^2=25^2-15^2=400\Rightarrow CH=20\left(cm\right)\)

7 tháng 8 2017

\(\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(\Rightarrow AC=\dfrac{4AB}{3}=20\left(cm\right)\)

\(\Delta ABC-\text{vuông}-\text{tại}-A-\text{có}-AH-\text{là}-\text{đ.c.}\)

(+) \(\Rightarrow BC^2=AB^2+AC^2\left(ptg\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

(+) \(\Rightarrow AC^2=CH\times BC\left(htl\right)\)

\(\Rightarrow CH=\dfrac{AC^2}{BC}=16\left(cm\right)\)

M là t.đ. của BC (AM là đ.t.tn. của \(\Delta ABC\))

=> CM = BC : 2 = 12,5 (cm)

CH - CM = 3,5 (cm)

3 tháng 8 2017

3)kẻ BD vuông góc voi71 BC, D thuộc AC

tam giác ABC cân tại A có AH là Đường cao

suy ra AH là trung tuyến

Suy ra BH=HC

(BD vuông góc BC

AH vuông góc BC

suy ra BD song song AH

suy ra BD/AH = BC/CH = 2

suyra 1/BD = 1/2AH suy ra 1BD^2 =1/4AH^2

tam giác BDC vuông tại B có BK là đường cao

suy ra 1/BK^2 =1/BD^2 +1/BC^2

suy ra 1/BK^2 =1/4AH^2 +1/BC^2

7 tháng 11 2017

1) \(1+tan^2\alpha=1+\dfrac{sin^2\alpha}{cos^2\alpha}=\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\) (đpcm).

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

28 tháng 8 2018

Một số hệ thức về cạnh và góc trong tam giác vuông

Lap mình hỏng rồi nên mình chụp lên, bạn chịu khó nhìn nha!!!

Chúc bạn học thật tốt!:))

a: \(\dfrac{AB^2}{AC^2}=\dfrac{HB\cdot BC}{HC\cdot BC}=\dfrac{HB}{HC}\)

b: \(\dfrac{DB}{EC}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)

\(=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)

a: \(\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot CB}{CH\cdot BC}=\dfrac{BH}{CH}\)

b: \(\dfrac{BD}{CE}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)

\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)

c: \(BD\cdot CE\cdot BC\)

\(=\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\cdot BC\)

\(=\dfrac{AH^4}{AH}=AH^3=DE^3\)