K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AD là phân giác

nên BD/CD=AB/AC=3/4

BC=căn 6^2+8^2=10cm

BD/CD=3/4

=>BD/3=CD/4=(BD+CD)/(3+4)=10/7

=>BD=30/7cm; CD=40/7cm

b: CD/BC=4/7

Xét ΔCED vuông tại E và ΔCAB vuông tại A có

góc C chung

=>ΔCED đồng dạng với ΔCAB

=>S CED/S CAB=(CD/CB)^2=16/49

=>S CED=16/49*1/2*6*8=384/49cm2

28 tháng 2 2021

A B C 9 12 D E

a, Xét tam giác ABC và tam giác EDC ta có : 

^C _ chung 

\(\frac{BC}{DC}=\frac{AC}{EC}\)

^BAE = ^CED = 90^0 

=> tam giác ABC ~ tam giác CED ( g.c.g ) 

HAB ? ^H ở đâu bạn ? 

b, Vì AD là tia phân giác tam giác ABC ta có : 

\(\frac{AB}{AC}=\frac{BD}{DC}\Leftrightarrow\frac{9}{12}=\frac{BD}{DC}\)

hay \(\frac{BD}{DC}=\frac{9}{12}\)tự tính BD và CD nhé 

c, Vì AB vuông AC ; DE vuông AC => AB // DE. Áp dụng hệ quả Ta lét : 

\(\frac{CE}{BC}=\frac{DE}{AB}\)thay dữ liệu bên phần b tính 

d, Áp dụng Py ta go với dữ kiện bên trên tìm tí số 

a:BC=căn 6^2+8^2=10cm

Xét ΔABC có AD là phân giác

nên BD/DC=AB/AC

=>BD/DC=3/4

=>BD/3=CD/4=(BD+CD)/(3+4)=10/7

=>BD=30/7cm

b: Xét ΔCED vuông tại E và ΔCAB vuông tại A có

góc C chung

=>ΔCED đồng dạng với ΔCAB

=>S CED/S CAB=(CD/CB)^2=(4/7)^2=16/49

 

31 tháng 3 2019

A B C D E 6 H

a) BC = \(\sqrt{AB^2+AC^2}\)\(\sqrt{6^2+8^2}\)\(\sqrt{100}\)= 10 (theo định lí Pythagoras)

\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)\(\frac{CD}{BC}\)\(\frac{AD}{DC}\)\(\frac{AB}{BC}\)\(\frac{6}{10}\)\(\frac{3}{5}\).

b) Ta có : \(\widehat{ABE}\)\(\widehat{EBC}\)(BD là phân giác)

=> \(\Delta ABD\)\(\Delta EBC\)(gg)

=> \(\frac{BD}{BC}\)\(\frac{AD}{EC}\)<=>  BD.EC = AD.BC (đpcm).

c) Ta có : \(\Delta CHE\)\(\Delta CEB\)( 2 tam giác vuông có chung góc C )

=> \(\frac{CH}{CE}\)\(\frac{CE}{CB}\)<=>  CH.CB = CE2                                                     (1)

                \(\Delta CDE\)\(\Delta BDA\)(gg  (2 góc đối đỉnh))

                 \(\Delta BDA~\Delta BCE\) (câu b))

=> \(\Delta CDE~\Delta BCE\)

=> \(\frac{CE}{BE}\)\(\frac{DE}{CE}\)<=> BE.DE = CE2                                                        (2)

Từ (1) và (2) => CH.CB = ED.EB (đpcm).

9 tháng 4 2019

a, xét tam giác kdc và tam giác abc có

góc dkc=bac=90(gt)

góc c chung

=>tam giác kdc đồng dạng tam giác abc(gg)

c, từ cma có tam giác kdc đồng dạng tam giác abc(gg)

=>\(\frac{kd}{ab}=\frac{kc}{ac}\)