Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Lê Thu Phương Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a, xét tam giác AHB và tam giác DBH có : HB chung
góc AHB = góc HBD = 90 do AH _|_ BC (gt) và Bx _|_ BC (gt)
AH = BD (gt)
=> tam giác AHB = tam giác DBH (2cgv)
b, tam giác AHB = tam giác DBH (câu a)
=> góc DHB = góc HBA (đn) mà 2 góc này so le trong
=> HD // AB (đl_
c, câu này dễ tự tính được
a) Xét \(\Delta AHB\)và \(\Delta DBH\)có:
\(BH:\)cạnh chung
\(AH=DB\)(gt)
Suy ra \(\Delta AHB=\)\(\Delta DBH\left(2cgv\right)\)
b) Vì \(\Delta AHB=\)\(\Delta DBH\)(c/m ở câu a) nên \(\widehat{ABH}=\widehat{DHB}\)(hai góc tương ứng)
Mà hai góc này ở vị trí so le trong nên \(AB//DH\)
c) \(\Delta ABH\)vuông tại H có \(\widehat{BAH}=35^0\)nên \(\widehat{ABH}=90^0-35^0=55^0\)
hay \(\widehat{ABC}=55^0\)
\(\Delta ABC\)vuông tại A có \(\widehat{ABC}=55^0\)nên \(\widehat{ACB}=90^0-55^0=35^0\)
Vậy \(\widehat{ACB}=35^0\)
a: Xét ΔAHB vuông tại H và ΔDBH vuông tại B có
BH chung
BA=HD
Do đó: ΔAHB=ΔDBH
b: Xét tứ giác AHDB có
AH//DB
AH=DB
Do đó: AHDB là hình bình hành
Suy ra: AB//DH
c: \(\widehat{ACB}=\widehat{BAH}=35^0\)
Hình tự vẽ -.-
a) Xét hai tam giác vuông ABH và DHB có:
AH = BD (gt)
HB : cạnh chung
Do đó: \(\Delta ABH=\Delta DHB\)(hai cạnh góc vuông)
b) Vì \(\Delta ABH=\Delta DHB\) (câu a)
=> Góc AHB = DBH = 50 độ ( 2 góc tương ứng)
Trong tam giác vuông BHD có:
\(\widehat{BHD}+\widehat{HBD}+\widehat{HDB}=180^o\)
Thay: 50 + 90 + HDB = 180
=> HDB = 180 - 90 - 50 = 40
c) Gọi giao điểm của HD và AC là K
Ta có: \(AH\perp HB;BD\perp HB\)=> AH // BD
=> Góc KHA = HDB = 40 (1)
Trong tam giác HBA vuông tại H. Ta có:
HAB + ABH = 90
HAB = 90 - ABH = 90 - 50 = 40 (1)
(1) và (2) suy ra: HAB = KHA = 40. Mà chúng so le trong.
Do đó: KD // AB => HKA = CAB = 90 (so le trong)
=> DH vuông góc AC
=>
A B C H D 35°
GT| \(\widehat{BAC}=90\text{°}\) \(AH\perp BC\)tại H Trên đường thẳng vuông góc tại B lấy D sao cho BD = AH \(\widehat{BAH}=35\text{°}\) |
KL | AB // DH |
Xét \(\Delta AHB\&\Delta DBH\) ta có :
AH = BD ( hình vẽ )
BH cạnh chung
AB = HD ( gt )
=> \(\Delta AHB=\Delta DBH\)( c.c.c )
b) Ta có :
\(\Delta AHB=\Delta DBH\) ( cmt )
\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )
mà \(\widehat{ABH}\&\widehat{DBH}\)là 2 góc SLT
=> AB // DH