K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDEC vuông tạiD và ΔABC vuông tại A có

góc C chung

Do đó: ΔDEC\(\sim\)ΔABC

Suy ra: CD/CA=CE/CB

hay CD/CE=CA/CB

b: Xét ΔADC và ΔBEC có

CA/CB=CD/CE

góc DCA chung

Do đo: ΔADC\(\sim\)ΔBEC

c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{AH\cdot BC}{2}\)

nên \(AB\cdot AC=AH\cdot BC\)

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD*CB=CA*CE

c: Xét ΔBEC và ΔADC có

CB/CA=CE/CD

góc C chung

=>ΔBEC đồg dạng vơi ΔADC

5 tháng 3 2023

c.ơn ạ

 

20 tháng 11 2022

a: 

Xét ΔAHD có AH=HD và góc AHD=90 độ

nên ΔAHD vuông cân tại H

=>góc HAD=góc HDA=45 độ

=>góc ADE=45 độ

Xét tứ giác ABDE có góc EAB+góc EDB=180 độ

nên ABDE là tứ giác nội tiếp

=>góc ABE=góc ADE=45 độ

Xét ΔEAB vuông tại A có góc ABE=45 độ

nên ΔEAB vuông cân tại A

=>AE=AB

b: Xét tứ giác AMHB có góc AMB=góc AHB=90 độ

nên AMHB là tứ giác nội tiếp

=>góc AHM=góc ABM=45 độ

20 tháng 11 2022

a: 

Xét ΔAHD có AH=HD và góc AHD=90 độ

nên ΔAHD vuông cân tại H

=>góc HAD=góc HDA=45 độ

=>góc ADE=45 độ

Xét tứ giác ABDE có góc EAB+góc EDB=180 độ

nên ABDE là tứ giác nội tiếp

=>góc ABE=góc ADE=45 độ

Xét ΔEAB vuông tại A có góc ABE=45 độ

nên ΔEAB vuông cân tại A

=>AE=AB

b: Xét tứ giác AMHB có góc AMB=góc AHB=90 độ

nên AMHB là tứ giác nội tiếp

=>góc AHM=góc ABM=45 độ

5 tháng 8 2016

undefined

a) Kẻ EK vuông góc với AH

Ta có: góc KHD=góc EDH=90 độ

Mà góc KHD và góc EDH là 2 góc đồng vị nên KH//DE

Lại có: góc HKE=góc DHK=90 độ

Mà góc HKE và góc DHK là 2 góc đồng vị nên HD//KE

Vì KH//DE; HD//KE nên HD=KE( tính chất đoạn chắn)

Mà HD=AH nên KE=AH

Vì tam giác ABC vuông tại A nên góc BAH+ góc HAC=90 độ

Vì tam giác AKE vuông tại K nên góc KAE+góc KEA=90 độ

Do đó: góc BAH= góc KEA

Xét tam giác AHB và tam giác EKA có:

góc AHB=góc EKA=90 độ

AH=KE (cmt)

góc BAH=góc AEK (cmt)

=> tam giác AHB=tam giác EKA (g.c.g)

=> AB=AE

b) Vì M là trung điểm của cạnh BE nên AM là đường trung tuyến của tam giác ABE

Mà tam giác ABE vuông tại A nên AM=\(\frac{1}{2}\)BE (1)

M là trung điểm của BE nên DM là đường trung tuyến của tam giác BDE

Mà tam giác BDE vuông tại D nên DM=\(\frac{1}{2}\)BE (2)

Từ (1) và (2) => AM=DM

Xét tam giác HMA và tam giác HMD có:

HM:chung

AH=HD
AM=DM

=> tam giác HMA=tam giác HMD ( c.c.c)

=> góc AHM=góc DHM = \(\frac{1}{2}\)AHD

Mà góc AHD=90 độ nên góc AHM= 90 độ :2 = 45 độ

 

a: Xét tứ giác HDEI có

\(\widehat{EDH}=\widehat{DHI}=\widehat{EIH}=90^0\)

=>HDEI là hình chữ nhật

b:

Xét ΔAHD có \(\widehat{AHD}=90^0\) và HA=HD

nên ΔAHD vuông cân tại H

=>\(\widehat{ADH}=45^0\)

Xét tứ giác AEDB có 

\(\widehat{EAB}+\widehat{EDB}=90^0+90^0=180^0\)

=>AEDB là tứ giác nội tiếp

=>\(\widehat{AEB}=\widehat{ADB}=\widehat{ADH}=45^0\)

Xét ΔAEB vuông tại A có \(\widehat{AEB}=45^0\)

nên ΔAEB vuông cân tại A

=>AE=AB

 

7 tháng 12 2023

cho mình xin cái hình đc ko