\(AB^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2020

image

a. Xét ΔABC và ΔHBA có:

BAC=BHA=90o

B chung

⇒ ΔABC ΔHBA(g-g)

AB/BC=BH/AB

⇒ AB²=BC.BH

b. Xét ΔABC ⊥ A có: AH là đường cao

⇒ AB²+AC²=BC² (theo định lý Pitago)

⇒ BC²=15²+20²=225+400=625

⇒ BC=25 (cm)

Xét ΔABC ⊥ A có: AH là đường cao

⇒ AB²=BC.BH

⇔ BH=AB²/BC

⇔ BH=15²/25= 9(cm)

Ta có BH+HC=BC

⇒ HC=BC-BH

⇔ HC=25-9=16 (cm).

xin lỗi mk làm đc câu a à!!

4 tháng 6 2020

Không sao cả, làm câu a) cũng được rồi á! Cảm ơn bạn nhiều nha!

8 tháng 12 2018

a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{ABC}\) chung

Do đó; ΔAHB\(\sim\)ΔCAB

Suy ra: AB/CB=HB/AB

hay \(AB^2=HB\cdot BC\)

b: BC=25cm

BH=225:25=9(cm)

CH=25-9=16(cm)

c: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

26 tháng 3 2016

mình tóm tắt thôi nha

▲MHA đồng dạng ▲HBA(g-g)

▲ABC đồng dạng ▲HBA(g-g)

suy ra ▲MHA đồng dạng ▲ABC

▲MHA đồng đăng ▲ANM 

suy ra ▲ANM đồng dạng ▲ABC

suy ra tỉ số rồi ra

b)áp dụng PY-ta-go thì 

BC =25cm

ta có S▲ABC =1/2 AB.AC

mặt khác S▲ABC=1/2 AH.BC

suy  ra AB.AC=AH.BC

suy ra AH=(15.20)/25=12cm

ta có ▲ANM đồng dạng ▲ABC 

suy ra \(\frac{NM}{BC}=\frac{AM}{AC}\)

\(\Rightarrow\frac{AH}{BC}=\frac{AM}{AC}=\frac{12}{25}\)

\(\Rightarrow\frac{S▲ANM}{S▲ABC}=\left(\frac{12}{25}\right)^2=0,2304\)

nhớ kick cho mình nha

26 tháng 3 2016

câu b) tính tỉ số diện tích dùm mình lun nha bạn cần gắp lắm!!!!!!!!!!

5 tháng 3 2022

a, Xét tam giác ABH và tam giác CBA ta có 

^B _ chung 

^AHB = ^BAC = 900

Vậy tam giác ABH ~ tam giác CBA (g.g) 

\(\dfrac{AB}{BC}=\dfrac{BH}{AB}\Rightarrow AB^2=BH.BC\)(*) 

b, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=25cm\)

Lại có (*) => \(BH=\dfrac{AB^2}{BC}=9cm\)

=> CH = BC - BH = 16 cm 

c, Xét tam giác AHM và tam giác ABH có 

^A _ chung 

^AMH = ^AHB = 900

Vậy tam giác AHM ~ tam giác ABH (g.g) 

\(\dfrac{AH}{AB}=\dfrac{AM}{AH}\Rightarrow AH^2=AM.AB\)(1) 

Xét tam giác AHN và tam giác ACH có 

^A _ chung 

^ANH = ^AHC = 900

Vậy tam giác AHN ~ tam giác ACH (g.g) 

\(\dfrac{AH}{AC}=\dfrac{AN}{AH}\Rightarrow AH^2=AN.AC\)(2) 

Từ (1) ; (2) ta có AM . AB = AN . AC