Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C H 6 8
a) Áp dụng định lý pytago vào \(\Delta\)ABC vuông tại A có:
BC2 = AB2 + AC2
=> BC2 = 62 + 82
=> BC2 = 102
=> BC = 10
b) Áp dụng định lý pytago vào \(\Delta\)AHB vuông tại H và \(\Delta\)AHC vuông tại H có:
AB2 = AH2 + BH2
=> 62 = 4,82 + BH2
=> BH2 = 62 - 4,82
=> BH2 = 12,96 => BH = 3,6.
AC2 = AH2 + CH2
=> 82 = 4,82 + CH2
=> CH2 = 82 - 4,82
=> CH2 = 40,96 => CH = 6,4
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
- Áp dụng định lý pi ta go vào tam giác ABC vuông tại A ta được :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2+5^2=13^2\)
\(\Rightarrow AC=12\left(cm\right)\)
- Xét tam giác BHA và tam giác BAC có : \(\left\{{}\begin{matrix}\widehat{BHA}=\widehat{BAC}=90^o\\\widehat{B}\left(chung\right)\end{matrix}\right.\)
=> Hai tam giác trên đồng dạng .
=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
=> \(BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\)
=> \(CH=BC-BH=\dfrac{144}{13}\left(cm\right)\)
- Áp dụng định lý pi ta go vào tam giác ABH vuông tại H ta được :
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH=\dfrac{60}{13}\left(cm\right)\)
Vậy ...
Diện tích tam giác ABC là:
6.8:2=24 (cm2)
Áp dụng định lí Py-ta-go cho tam giác ABC, ta có:
AB2+AC2=BC2
=>62+82=BC2=>36+64=BC2=>BC=10 (cm)
Đường cao AH dài là:
24.2:10=4,8 (cm)
Áp dụng định lí Py-ta-go cho tam giác ABH, ta có:
AH2+BH2=AB2
=>4,82+BH2=36
=>23,04+BH2=36
=>BH2=12,96=>BH=3,6 (cm)
Độ dài CH là:
10-3,6=6,4 (cm)
Đáp số: AH: 4,8 cm; BH: 3,6 cm; CH: 6,4 cm; BC: 10 cm
\(\text{Áp dụng định lý Pytago ta có:}\)
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=6^2+8^2\)
\(\Rightarrow BC^2=100\)
\(\Rightarrow BC=10\left(\text{Vì BC}>0\right)\)
\(S_{\Delta ABC}\text{ là}:\)
\(\frac{6.8}{2}=24\)
\(\text{Vì AH là đường cao hạ từ đỉnh A và BC là đáy tương ứng với đường cao AH nên}\)
\(S_{\Delta ABC}=\frac{BC.AH}{2}=\frac{10.AH}{2}=24\)
\(\Rightarrow AH=24:5=4,8\)
\(\text{Áp dụng định lý Pytago ta có:}\)
\(AB^2=AH^2+BH^2\)
\(\Rightarrow6^2=4,8^2+BH^2\)
\(BH^2=12.96\)
\(BH=3,6\)
\(\text{CH thì tính tương tự như BH nha}\)
b) Xét \(\Delta ABH\) vuông tại \(H\left(gt\right)\) có:
\(AB^2=AH^2+BH^2\) (định lí Py - ta - go).
=> \(6^2=\left(4,8\right)^2+BH^2\)
=> \(BH^2=6^2-\left(4,8\right)^2\)
=> \(BH^2=36-23,04\)
=> \(BH^2=12,96\)
=> \(BH=3,6\left(cm\right)\) (vì \(BH>0\)).
+ Xét \(\Delta ACH\) vuông tại \(H\left(gt\right)\) có:
\(AC^2=AH^2+CH^2\) (định lí Py - ta - go).
=> \(8^2=\left(4,8\right)^2+CH^2\)
=> \(CH^2=8^2-\left(4,8\right)^2\)
=> \(CH^2=64-23,04\)
=> \(CH^2=40,96\)
=> \(CH=6,4\left(cm\right)\) (vì \(CH>0\)).
Vậy \(BH=3,6\left(cm\right);CH=6,4\left(cm\right).\)
Chúc bạn học tốt!
a) Xét △ABC vuông tại A-gt, ta có
AB2+ AC2 = BC2 (định lí Pytago)
Thay AB=6cm, AC=8cm-gt, ta có
62 + 82 = BC2
BC2 = 36 + 64 = 100
100=102. Vậy BC= 10 cm