Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tu ve hinh :
xet tamgiac AHB va tamgiac AHC co : goc AHB = goc AHC = 90 do AH | BC (gt) (2)
tamgiac ABC vuong can tai A (gt) => AB = AC (dn) va goc ABC = goc ACB = 45 (tc) (1)
=> tamgiac AHB = tamgiac AHC (ch - gn)
=> goc BAH = goc CAH (dn)
goc BAH + goc CAH = goc ABC ma goc ABC = 90 do tamgiac ABC vuong can tai A (gt)
=> goc BAH = goc CAH = 45 (3)
(1)(2)(3) => tamgiac AHB va tamgiac AHC vuong can
hình bạn tự vẽ nhé!!
a, Xét tam giác ABD và tam giác ACE
có góc ADB = góc AEC (=90độ)
AB =AC (do tam giác ABC cân tại A)
góc A chung
=> 2 tam giác ABD=ACE(ch-gn)
b, xét tam giác BDC và tam giác CEB
có góc BDC = góc CEB (=90độ)
BC là cạnh chung
góc ABC = góc ACB (do tam giác ABC cân tại A)
=>2 tam giác BDC = CEB (ch-gn)
=> góc DBC = góc ECB(2 góc tương ứng)
Xét tam giác BHC có góc DBC = góc ECB (cmt)
=> tam giác BHC cân tại H
c, Xét tam giác DHC có HDC = 90 độ
=> HC > HD (trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà HC = HB (vì tam giác BHC cân tại H)
Từ đó => HB>HD
d, mình chưa học!!sorry!!
chúc bạn hk tốt!!
A B C H N M
Bài làm
a) Vì tam giác ABC vuông cân ở A
Mà AH là phân giác
=> AH là trung tuyến.
=> AH = BH = HC
=> Tam giác AHC cân tại H
=> AH = HC
=> \(\widehat{HAC}=\widehat{HCA}\)
Mà \(\widehat{HAB}=\widehat{HAC}\)( Do AH phân giác )
=> \(\widehat{HCA}=\widehat{HAB}\)
Ta có: AN + NB = AB
AM + MC = AC
mà AB = AC, BN = AM
=> AN = MC
Xét tam giác AHN và tam giác CHM có:
AN = MC ( cmt )
\(\widehat{HCA}=\widehat{HAB}\)( cmt )
AH = HC ( cmt )
=> Tam giác AHN = tam giác CHM ( c.g.c)
b) Vì tam giác AHN = tam giác CHM ( cmt )
=> NH = HM
Vì AH trung tuyến
=> BH = HC
Xét tam giác AHM và tam giác NHB có:
NH = HM ( cmt )
BN = AM ( gt )
HB = HC ( cmt )
=> Tam giác AHM = tam giác NHB ( c.c.c )
1
a) trước tiên chứng minh\(\widehat{ABM}=\widehat{ACN}\)
rồi mới chứng minh 2 tam giác ABM và ACN bằng nhau
suy ra AM = AN
b)Đầu tiên chứng minh\(\widehat{ABH}=\widehat{ACK}\)
rồi chứng minh hai tam giác ABH và ACK bằng nhau
suy ra BH = CK
c) vì hai tam giác ABH và ACK bằng nhau (cmt)
nên AH = AK
d) ta có \(\widehat{AMB}=\widehat{ACN}\)(hai tam giác ABH và ACK bằng nhau)
nên dễ cm \(\widehat{MBH}=\widehat{NCK}\)
còn lại tự cm
e) dễ cm tam giác ABC đều
vẽ \(BH\perp AC\)
nên BH vừa là đường cao; phân giác và trung tuyến
dễ cm \(\Delta BHC=\Delta NKC\)
nên \(\widehat{BCH}=\widehat{NCK}=60^0\)
từ đó dễ cm AMN cân và OBC dều
A B C E D I K
Ta có \(\widehat{ABI}\)là góc ngoài của \(\Delta ABD\Rightarrow\widehat{ABI}\)\(=90^0+\widehat{A}\)
\(\widehat{ACK}\)là góc ngoài của \(\Delta ACE\Rightarrow\widehat{ACK}\)\(=90^0+\widehat{A}\)
\(\Rightarrow\widehat{ABI}\)\(=\widehat{ACK}\)
Xét \(\Delta IBA\)và\(\Delta ACK\)có :
IB = AC (gt)
\(\widehat{ABI}\)\(=\widehat{ACK}\)( cmt)
AB = CK ( gt )
\(\Rightarrow\Delta IBA=\Delta ACK\)( c . g . c )
\(\Rightarrow AI=AK\)( 2 cạnh tương ứng ) (1)
Vì \(\Delta AKE\)vuông tại A \(\Rightarrow\widehat{EAK}\)+\(\widehat{AKE}=90^0\)
Mà \(\widehat{AKE}=\widehat{IAB}\)( vì \(\Delta IBA=\Delta ACK\left(cmt\right)\)
\(\Rightarrow\widehat{IBA}+\widehat{EAK}=90^0\) (2)
Từ (1) và (2) \(\Rightarrow\)\(\Delta AIK\)vuông cân tại A
a: Xet ΔAHB vuông tại H co góc HBA=45 độ
nên ΔAHB vuông cân tại H
b: Xet ΔAHM và ΔBHN có
AH=BH
góc HAM=góc HBN
AM=BN
=>ΔAHM=ΔBHN
a, xét tam giác AHC và tam giác AHB có : góc AHC = góc AHB = 90 do AH là đường cao (gt)
tam giác ABC vuông cân tại A => AB = AC (đn) và góc ABC = góc ACB = 45 (tc)
=> tam giác AHC = tam giác AHB (ch - gn)
=> góc CAH = góc BAH (đn)
=> góc BAH = góc BAC : 2 mà góc BAC do tam giác ABC vuông cân (gt)
=> góc BAH = 45 = góc ACB (cmt)
=> tam giác HAB vuông cân (đn)