Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sử dụng phương pháp phát triển nâng cao dùng cho bồi dưỡng học sinh giỏi là gắn hệ tọa độ Oxy vào hình vẽ để làm
Gọi AH là đường cao; hạ OK vuông góc với AH (K thuộc AH).
Đặt P= OD^2 + OE^2 + OF^2
P= OD^2 + OE^2 + OF^2 = OD^2 +OA^2 = AK^2 + KH^2 + OK^2
---> P ≥ AK^2+KH^2 (dấu = xảy ra khi OK=0)
đặt AK=x; KH=y, AH=h, nhận thấy x+y=h.
Áp dụng (x+y)^2 ≥ 4xy hay [(x+y)^2] /2 ≥ 2xy
P ≥ x^2 +y^2 = (x+y)^2 -2xy =h^2 -2xy ≥ h^2 - [(x+y)^2] /2
P ≥ h^2 - (h^2)/2 = (h^2)/2
Dấu = xảy ra khi đồng thời có OK=0 và x=y, tức khi O là trung điểm của AH
o A B M C D I
a. Do I là trung điểm dây cung BC nên ta có \(\widehat{OIC}=90^0\). Xét tứ giác MOCI có \(\widehat{CMO}+\widehat{CIO} =90^0+90^0=180^0\) nên tứ giác MOIC là tứ giác nội tiếp đường tròn đường kính CO.
b. Do D là điểm chính giữa cung AB nên \(DO \perp AB\), mà \(CM \perp AB\) nên \(DO \parallel CM\). Từ đó dễ thấy \(dtCMD=dtCMO\).
\(\frac{1}{2}CM.MO\le\frac{1}{2}\frac{CM^2+OM^2}{2}=\frac{1}{4}OC^2=\frac{R^2}{4}\)
Vậy diện tích tam giác MCD lớn nhất bằng \(\frac{R^2}{4}\) khi \(OM=\frac{R}{\sqrt{2}}\)
Chúc em học tốt ^^