Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AB^2=BC^2-AC^2=25^2-20^2=225\)
hay \(AB=\sqrt{225}=15cm\)
Xét ΔABC có
BM là đường phân giác ứng với cạnh AC(gt)
nên \(\frac{CM}{BC}=\frac{AM}{AB}\)
hay \(\frac{CM}{25}=\frac{AM}{15}\)
Ta lại có: CM+AM=AC=20cm(M nằm giữa A và C)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{CM}{25}=\frac{AM}{15}=\frac{CM+AM}{25+15}=\frac{AC}{40}=\frac{20cm}{40}=\frac{1}{2}\)
Do đó: \(CM=\frac{25\cdot1}{2}=12,5cm\)
Vậy: AB=15cm; CM=12,5cm
A B C E D H M
a) Xét tam giác EDB và tam giác EAC có:
\(\hept{\begin{cases}\widehat{E}chung\\\widehat{EAC}=\widehat{EDB}=90^0\end{cases}\Rightarrow\Delta EDB~EAC\left(g.g\right)}\)
\(\Rightarrow\frac{ED}{EB}=\frac{EA}{EC}\)( các cạnh tương ứng tỉ lệ )
\(\Rightarrow\frac{ED}{EA}=\frac{EB}{EC}\)
Xét tam giác EDA và EBC có:
\(\hept{\begin{cases}\widehat{E}chung\\\frac{ED}{EA}=\frac{EB}{EC}\left(cmt\right)\end{cases}\Rightarrow\Delta EDA~\Delta EBC\left(g.g\right)}\)
\(\Rightarrow\widehat{EDA}=\widehat{EBC}\)
b) Kẻ \(MH\perp BC\)\(\left(H\in BC\right)\)
Xét tam giác BMH và tam giác BCD có:
\(\hept{\begin{cases}\widehat{DBC}chung\\\widehat{BHM}=\widehat{BDC}=90^0\end{cases}\Rightarrow\Delta BMH~\Delta BCD\left(g.g\right)}\)
\(\Rightarrow\frac{BM}{BH}=\frac{BC}{BD}\)( các cạnh t.ứng tỉ lệ )
\(\Rightarrow BM.BD=BH.BC\left(1\right)\)
Xét tam giác CMH và tam giác CBA có:
\(\hept{\begin{cases}\widehat{BCA}chung\\\widehat{CHM}=\widehat{CAB}=90^0\end{cases}\Rightarrow\Delta CMH~\Delta CBA\left(g.g\right)}\)
\(\Rightarrow\frac{CM}{CH}=\frac{CB}{CA}\)( các cạnh t.ứng tỉ lệ )
\(\Rightarrow CM.CA=CH.CB\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BM.BD+CM.CA=BC.BH+BC.CH\)
\(\Rightarrow BM.BD+CM.CA=BC.\left(BH+HC\right)\)
\(\Rightarrow BM.BD+CM.CA=BC^2\)không đổi
Vậy khi M di chuyển trên AC thì tổng \(BM.BD+CM.CA\)có giá trị không đổi
a: AB=15cm
Xét ΔABC có BM là phân giác
nên AM/AB=MC/BC
=>AM/15=MC/25
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{15}=\dfrac{MC}{25}=\dfrac{AM+MC}{15+25}=\dfrac{20}{40}=\dfrac{1}{2}\)
Do đó: CM=12,5(cm)
b: Xét ΔNAC vuông tại A và ΔNDB vuông tại D có
\(\widehat{N}\) chung
Do đó: ΔNAC\(\sim\)ΔNDB
Suy ra: NA/ND=NC/NB
hay \(NA\cdot NB=ND\cdot NC\)