Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
.Ta có :
AH⊥BC,HE⊥AB→\(\widehat{AEH}=\widehat{AHB}\)
=> \(\Delta AEH\approx\Delta AHB\)(g.g)
=>\(\dfrac{AE}{AH}=\dfrac{AH}{AB}\)
=>AH\(^2\)=AE.AB
Lam tuong tu ta dc AH\(^2\)=AF.AC
=> AE.AB=AF.AC
a: ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
ΔAHC vuông tại H có HF là đường cao
nen AF*AC=AH^2
=>AE*AB=AF*AC
=>AE/AC=AF/AB
=>ΔAEF đồng dạng với ΔACB
Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [C, B] Đoạn thẳng m: Đoạn thẳng [E, H] Đoạn thẳng n: Đoạn thẳng [F, H] Đoạn thẳng p: Đoạn thẳng [A, H] Đoạn thẳng q: Đoạn thẳng [A, M] A = (-1.98, 1.26) A = (-1.98, 1.26) A = (-1.98, 1.26) C = (7.12, 1.2) C = (7.12, 1.2) C = (7.12, 1.2) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm H: Giao điểm đường của j, i Điểm H: Giao điểm đường của j, i Điểm H: Giao điểm đường của j, i Điểm E: Giao điểm đường của k, h Điểm E: Giao điểm đường của k, h Điểm E: Giao điểm đường của k, h Điểm F: Giao điểm đường của l, f Điểm F: Giao điểm đường của l, f Điểm F: Giao điểm đường của l, f Điểm M: Trung điểm của B, C Điểm M: Trung điểm của B, C Điểm M: Trung điểm của B, C
a) Xét tam giác AEH và tam giác AHB có:
\(\widehat{AEH}=\widehat{AHB}=90^o\)
Góc A chung
\(\Rightarrow\Delta AEH\sim\Delta AHB\left(g-g\right)\Rightarrow\frac{AH}{AB}=\frac{AE}{AH}\Rightarrow AE.AB=AH^2\)
Tương tự \(\Delta AHF\sim\Delta ACH\left(g-g\right)\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\Rightarrow AF.AC=AH^2\)
Xét tam giác vuông ABC có AH là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:
\(HB.HC=AH^2\)
Vậy nên ta có AE.AB = AF.AC = HB.HC
b) Ta có \(\Delta AHC\sim\Delta BAC\left(g-g\right)\Rightarrow\frac{AH}{AB}=\frac{HC}{AC}\Rightarrow AH.AC=AB.HC\)
\(\Rightarrow AB.AH.AC=AB.AB.HC\Rightarrow\left(AB.AC\right).AH=AB^2.HC\)
\(\Rightarrow BC.AH.AH=AB^2.HC\Rightarrow AH^2.BC=AB^2.HC\)
\(\Rightarrow\frac{AH^2}{AB^2}=\frac{CH}{BC}\Rightarrow\left(\frac{AH}{AB}\right)^2=\frac{CH}{BC}\Rightarrow sin^2B=\frac{CH}{BC}\)
c) Xét tam giác vuông ABC có AH là đường cao, áp dụng hệ thức lượng trong tam giác ta có :
\(AC^2=HC.BC\)
Lại có AM là đường trung tuyến ứng với cạnh huyền nên BC = 2AM.
Suy ra \(AC^2=HC.2.AM\Rightarrow\frac{1}{AM}=\frac{2HC}{AC^2}\Rightarrow\frac{AH}{AM}=2.\frac{AH}{AC}.\frac{HC}{AC}\)
\(\Rightarrow sin\widehat{AMB}=2.sin\widehat{ACB}.cos\widehat{ACB}\)
M A B C K H O D
Mk chỉ kịp làm câu a thôi sorry nha!
Dễ dàng chứng minh được tam giác MAB và tam giác MCD đều vuông góc tại M ( CM theo bài 7 chương I sách GK toán 9)
\(\Rightarrow Sin^2\angle MCD=Cos^2\angle MDC \)
và
\(\Rightarrow Sin^2\angle MAB=Cos^2\angle MBA \)
thay vào ta có: \(sin^2\angle MBA+ sin^2\angle MAB + sin^2\angle MCD+sin^2\angle MDC \)
\(=sin^2\angle MBA+ cos^2\angle MBA + cos^2\angle MDC+sin^2\angle MDC\)
\(=(sin^2\angle MBA+ cos^2\angle MBA) + (cos^2\angle MDC+sin^2\angle MDC)\)
\(= 1+1=2\)
Gọi M là trung điểm của AD
Vì M và F là trung điểm của lần lượt AD và BD nên: \(MF=\frac{1}{2}AB\left(1\right)\)
Vì M và E là trung điểm của lần lượt AD và AC nên: \(ME=\frac{1}{2}CD\left(2\right)\)
Mà AB//CD ( gt ) nên M vè E và F thẳng hàng
\(\Rightarrow EF=ME-MF\left(3\right)\)
Thay \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow EF=\frac{1}{2}CD-\frac{1}{2}AB\)
Hay \(EF=\frac{AB-CD}{2}\left(đpcm\right)\)
Câu hỏi của headsot96 - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo!
A B H C E F
a/
Xét tg vuông ABH có
\(AH^2=AE.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền) (1)
Xét tg vuông ACH có
\(AH^2=AF.AC\)(trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền) (2)
Từ (1) và (2) \(\Rightarrow AE.AB=AF.AC\)
b/
Ta có
\(\widehat{AEH}=\widehat{AFH}\) => AEHF là tứ giác nội tiếp
\(\Rightarrow\widehat{AFE}=\widehat{AHE}\) (góc nội tiếp chùng chắn cung AE)
c/
AEHF là tứ giác nội tiếp (cmt)
\(\Rightarrow\widehat{EAH}=\widehat{EFH}\) (góc nội tiếp chùng chắn cung EH)