Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\widehat{BDE}=90^0-\widehat{CDE}=\widehat{BCE}\)
\(\Rightarrow\)△BDE∼△DCE (g-g) \(\Rightarrow\dfrac{BE}{DE}=\dfrac{DE}{CE}\Rightarrow BE.CE=DE^2\left(1\right)\)
-△AHC có: AH//DE (cùng vuông góc BC) \(\Rightarrow\dfrac{DE}{AH}=\dfrac{CE}{CH}\Rightarrow DE=\dfrac{CE.AH}{CH}\Rightarrow DE^2=\dfrac{AH^2.CE^2}{CH^2}\left(2\right)\)
-Từ (1) và (2) ta có điều cần phải c/m.
a: Xét ΔAHB vuông tại H và ΔADH vuông tại D có
góc HAB chung
Do đó: ΔAHB\(\sim\)ΔADH
Xét ΔAHC vuông tại H và ΔAEH vuông tại E có
góc HAC chung
Do đó: ΔAHC\(\sim\)ΔAEH
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
(hình tự vẽ,gt kl tự viết).
a) xét \(\Delta ADB\) và \(\Delta EDC\) có:
góc BAD = góc CED(=90 độ)
góc BDA = góc CDE(đối đỉnh)
=> \(\Delta ADB\sim\Delta EDC\left(g.g\right)\)
= hai bảy 🙏
Xét ΔAHC vuông tại H và ΔBDC vuông tại D có
góc C chung
Do đó: ΔAHC\(\sim\)ΔBDC