Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do các tứ giác BFEC ,DEIC , ABDE nội tiếp nên: \(\widehat{AFE}=\widehat{ACB}=\widehat{DIE}\)
\(\widehat{MEC}=\widehat{ABC}=\widehat{DEC}=\widehat{DIC}\Rightarrow\)Tứ giác MENI nội tiếp
\(\Rightarrow\widehat{DIE}=\widehat{EMN}\Rightarrow\widehat{AFE}=\widehat{EMN}\Rightarrow MN//AB\)
Mà \(CH\perp AB\Rightarrow CH\perp MN\left(đpcm\right)\)
b) Xét \(\Delta ENM\)và \(\Delta TNC\)có: \(\widehat{EMN}=\widehat{EIN}=\widehat{NCT},\widehat{ENM}=\widehat{TNC}\Rightarrow\Delta ENM~\Delta TNC\left(g.g\right)\)
\(\Rightarrow\frac{NE}{NT}=\frac{NM}{NC}\Rightarrow NC.NE=NM.NT\left(1\right)\)
Xét \(\Delta ENK\)và \(\Delta GNC\)có: \(\widehat{KEN}=\widehat{CGN},\widehat{ENK}=\widehat{GNC}\Rightarrow\Delta ENK~\Delta GNC\left(g.g\right)\)
\(\Rightarrow\frac{NE}{NG}=\frac{NK}{NC}\Rightarrow NE.NC=NG.NK\left(2\right)\)
Từ (1) và (2) suy ra \(NM.NT=NG.NK\Rightarrow\frac{NK}{NT}=\frac{NM}{NG}\Rightarrow\Delta TGN~\Delta KMN\)
\(\Rightarrow\widehat{KMN}=\widehat{TGN}\left(3\right)\)
Mà \(\widehat{KMN}=\widehat{HCK}\)(cùng phụ với \(\widehat{KHC}\))\(\Rightarrow\widehat{KMN}=\widehat{HGN}\)(4)
Từ (3) và (4) suy ra \(\widehat{TGN}=\widehat{HGN}\Rightarrow\)H, T, G thẳng hàng (đpcm)
A B C D E F H I N M T K O F
Ta có tứ giác AEDB nội tiếp (AB), tứ giác BFEC nội tiếp (BC) nên ^CID = ^CED = ^ABD = ^AEF = ^MEN
=> Tứ giác MINE nội tiếp => ^EMN = ^EIN = ^ECT => Tứ giác EMCT nội tiếp
Áp dụng hệ thức lượng trong đường tròn: NM.NT = NE.NC = NF.NK => Tứ giác MKTF nội tiếp
=> ^FKT = ^FMT = ^HMN. Cũng từ tứ giác MINE nội tiếp ta suy ra ^EMN = ^ECT = ^AFE
=> MN // AF. Mà AF vuông góc CH nên MN vuông góc CH
Kết hợp với ^HFC chắn nửa đường tròn (O) suy ra ^HMN = ^HCF (Cùng phụ ^MHC)
Do đó ^FKT = ^HCF = ^FKH. Vì H,T nằm cùng phía so với FK nên KT trùng KH
Vậy thì H,K,T thẳng hàng (đpcm).
A B C D M N O I K P Q H S R L T E G
1) Do DN // AB nên ^DNC = ^BAC (Đồng vị). Mà ^BAC = ^DBC nên ^DNC = ^DBC => Tứ giác BNCD nội tiếp
Suy ra 5 điểm B,O,N,C,D cùng thuộc 1 đường tròn => ^BND = ^BOD = ^COD = ^CND
Ta có: DN // AB => ^BND = ^ABN. ^CND = ^NAB => ^NBA = ^NAB => \(\Delta\)ANB cân tại N (đpcm).
2) Ta có: ^DCM = ^DNB = ^DNC => \(\Delta\)DMC ~ \(\Delta\)DCN => DC2 = DM.DN. Dễ thấy: DC2 = DI.DA
Suy ra: DM.DN = DI.DA => Tứ giác AIMN nội tiếp => ^IMK = ^IAN = ^IBC => \(\Delta\)MIK ~ \(\Delta\)MKB (g.g)
=> KM2 = KI.KB. Ta lại có: ^KDI = ^IAB = ^KBD => \(\Delta\)IKD ~ \(\Delta\)DKB (g.g) => KD2 = KI.KB
Từ đó: KM2 = KD2 => KM = KD = DM/2. Do G là trung điểm KD nên \(\frac{GM}{GK}=3\) (1)
Gọi giao điểm của tia AD và tia ND là R. Theo hệ quả ĐL Thales: \(\frac{QB}{QM}=\frac{AB}{MR}\) (2)
Nếu ta gọi giao của PI với BC là V, theo phép vị tự thì I là trung điểm của PV. Từ đó suy ra: GM=GR
Mà GD = GK = GM/3 nên DK = MR/3. Lại áp dụng hệ quả ĐL Thales: \(\frac{IK}{IB}=\frac{DK}{AB}=\frac{MR}{3AB}\) (3)
Từ (1),(2),(3) suy ra: \(\frac{GM}{GK}.\frac{QB}{QM}.\frac{IK}{IB}=3.\frac{AB}{MR}.\frac{MR}{3AB}=1\). Theo đk đủ của ĐL Mélelaus thì 3 điểm Q,I,G tương ứng nằm trên các cạnh BM,BK,KM của \(\Delta\)BKM thẳng hàng (đpcm).
3) Gọi (HCS) cắt (O) tại điểm thứ hai là T. E là giao điểm của OD và BC.
Ta thấy: ^TBD = ^TCB = ^THS = ^THD (Góc tạo bởi tiếp tuyến và dây + Góc nội tiếp) => Tứ giác BHTD nội tiếp
Từ đó: 5 điểm B,H,E,T,D cùng thuộc 1 đường tròn => ^BTD = ^BED = 900
Mặt khác: ^DTE = 1800 - ^DBE = 1800 - ^BAC = ^BTC => ^DTE = ^BTC => ^BTD = ^CTE
Suy ra: ^CTE = 900 => T nằm trên đường tròn (CE) cố định. Mà T cũng thuộc (O) cố định.
Nên T là điểm cố định. Do đó: Dây CT của đường tròn (HCS) cố định
=> Tâm L của (HCS) luôn nằm trên đường trung trực của đoạn CT cố định (đpcm).
a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800
=> Tứ giác BEHF nội tiếp.
b, Xét tứ giác AFEC có :
góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)
=> Tứ giác AFEC nội tiếp
a) Xét tứ giác DHEC có
\(\widehat{HDC}\) và \(\widehat{HEC}\) là hai góc đối
\(\widehat{HDC}+\widehat{HEC}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: DHEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)