Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 và Bài 2 tương tự nhau nên mk sẽ chỉ CM bài 1 thôi nha
Có \(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\overrightarrow{AB}+\overrightarrow{CD}=0\)
\(\Rightarrow\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}=0\)
\(\Leftrightarrow\overrightarrow{AD}+\overrightarrow{CB}=0\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\)
Bài 3:
Xét \(\Delta AIP\) theo quy tắc trung điểm có:
\(\overrightarrow{IC}=\frac{\overrightarrow{IA}+\overrightarrow{IP}}{2}\)
Làm tương tự vs các tam giác còn lại
\(\Rightarrow\overrightarrow{IB}=\frac{\overrightarrow{IN}+\overrightarrow{IC}}{2}\)
\(\Rightarrow\overrightarrow{IA}=\frac{\overrightarrow{IB}+\overrightarrow{IM}}{2}\)
Cộng vế vs vế
\(\Rightarrow\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\frac{\overrightarrow{IA}+\overrightarrow{IP}+\overrightarrow{IN}+\overrightarrow{IC}+\overrightarrow{IB}+\overrightarrow{IM}}{2}\)
\(\Leftrightarrow2\overrightarrow{IA}+2\overrightarrow{IB}+2\overrightarrow{IC}=\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\)
\(\Leftrightarrow\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\left(đpcm\right)\)
a) Vì M, N, P lần lượt là trung điểm của BC, CA, AB
Nên AM, BN, CP lần lượt là đường trung tuyến của BC, CA, AB.
\(\Rightarrow\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)
Lời giải:
a)
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{AB}+\overrightarrow{BM}+\overrightarrow{BC}+\overrightarrow{CN}+\overrightarrow{CA}+\overrightarrow{AP}\)
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{AC}+\overrightarrow{CM}+\overrightarrow{BA}+\overrightarrow{AN}+\overrightarrow{CB}+\overrightarrow{BP}\)
\(\Rightarrow 2(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP})=(\overrightarrow{AB}+\overrightarrow{BA})+(\overrightarrow{BM}+\overrightarrow{CM})+(\overrightarrow{BC}+\overrightarrow{CB})+(\overrightarrow{CA}+\overrightarrow{AC})+(\overrightarrow{AP}+\overrightarrow{BP})+(\overrightarrow{CN}+\overrightarrow{AN})\)
\(=\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}\) (do các cặp tổng đều là vecto đối nhau)
\(\Rightarrow \overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=0\)
(đpcm)
b) Theo phần a:
\(\overrightarrow{AM}=-(\overrightarrow{BN}+\overrightarrow{CP})=-\overrightarrow{BN}+(-\overrightarrow{CP})\)
\(=\overrightarrow{NB}+\overrightarrow{PC}\) (đpcm)
a: \(\overrightarrow{AM}+\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}=\dfrac{1}{2}\overrightarrow{AC}\)
b: \(=\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BA}\)
\(=\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BA}\)
c: \(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}\)
\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}+\dfrac{1}{2}\overrightarrow{CA}\)
\(=\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)=\overrightarrow{0}\)
Câu 1:
Gọi E là trung điểm của KC
=>AK=KE=EC
Xét ΔBKC có CM/CB=CE/CK
nên ME//BK
Xét ΔAME có AI/AM=AK/AE
nên IK//ME
=>IK//BK
=>B,I,K thẳng hàng
ta có : 2vecto AM =vecto AB +vectoAC
2 vecto BN = vectoBA +vectoBC
2 vecto CP =vecto CA + vectoCB
=> 2vecto AM +2 vecto BN + 2 vecto CP =vecto AB +vecto AC +vecto BA +vecto BC +vecto CA + vecto CB =vecto 0
=> vecto AM + vecto BN + vecto CP =vecto 0
MÌNH LÀM VẬY CŨNG KO BIẾT ĐÚNG KO NỮA