Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C M K H G I
a) Xét hai tam giác MHB và MKC có:
MB = MC (gt)
Góc HMB = góc KMC (đối đỉnh)
MH = MK (gt)
Vậy: tam giác MHB = tam giác MKC (c - g - c)
c) Ta có: AM = MB = MC = \(\dfrac{1}{2}\) BC (đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)
=> Tam giác MAB cân tại M
=> MH là đường cao đồng thời là đường trung tuyến
hay HB = HA
=> CH là đường trung tuyến ứng với cạnh AB
Hai đường trung tuyến AM và CH cắt nhau tại G
=> G là trọng tâm của tam giác ABC
Mà BI đi qua trọng tâm G (G thuộc BI)
Do đó BI là đường trung tuyến còn lại
hay I là trung điểm của AC (đpcm).
A B C M E 1 2 1
Giải:
Xét \(\Delta AMB,\Delta EMC\) có:
AM = EM ( gt )
\(\widehat{M_1}=\widehat{M_2}\) ( đối đỉnh )
BM = MC ( gt )
\(\Rightarrow\Delta AMB=\Delta EMC\left(c-g-c\right)\)
\(\Rightarrow AB=EC\) ( cạnh t/ứng )
\(\widehat{BAM}=\widehat{E_1}\) ( góc t/ứng )
Ta có: AB < AC ( quan hệ giữa đường vuông góc - đường xiên )
\(\Rightarrow EC< AC\)
\(\Delta ACE\) có: EC < AC
\(\Rightarrow\widehat{E_1}>\widehat{MAC}\)
\(\Rightarrow\widehat{BAM}>\widehat{MAC}\left(đpcm\right)\)
Vậy...
Mk nhắn nhầm một vài chỗ mong các bn thứ lỗi.( Ở câu c là cho BI=5cm nha)
\(P=\sqrt{\left(x-\dfrac{3}{4}\right)^2}+\dfrac{1}{4}\)
\(=\left|x-\dfrac{3}{4}\right|+\dfrac{1}{4}\)
Ta có : \(\left|x-\dfrac{3}{4}\right|\ge0\forall x\Rightarrow\left|x-\dfrac{3}{4}\right|+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)
\(\Rightarrow P\ge\dfrac{1}{4}\)
Dấu "=" xảy ra
\(\Leftrightarrow x-\dfrac{3}{4}=0\Leftrightarrow x=\dfrac{3}{4}\)
Vậy GTNN của P là \(\dfrac{1}{4}\) khi x = \(\dfrac{3}{4}\)
A B C N M
a, Xét ΔABM và ΔACM ,có :
AB = AC ( gt )
AM : cạnh chung
BM = CM ( gt )
\(\Rightarrow\) ΔABM = ΔACM ( c.c.c )
b, AB = AC
\(\Rightarrow\Delta ABC\) cân tại A
\(\Rightarrow\) AN là đường trung tuyến đồng thời là đường cao của ΔABC
Hay AN là phân giác của \(\widehat{BAC}\)
c, Ta có :MB = MC
\(\Rightarrow\) ΔMBC cân tại M
=> MN là đường tủng tuyến đồng thời là đường cao của ΔMBC
\(\Rightarrow MN\perp BC\) (1)
ΔABC cân tại A
=> AN là đường phân giác đồng thời là đường cao
\(\Rightarrow AN\perp BC\) (2)
Từ (1)(2) => A, M , N thẳng hàng
A B C D M K F E N O
cau a:CB;AN là trung tuyến ;CB/MB=2/3
> M trọng tâm tam giác ACD > vậy A;M;N thẳng hàng
câu b:DM là đường trung tuyến thứ 3> K trung diemAC.
cậu c: tương tự AF;CE;MK đồng qui tại O là trọng tâm tam giác ACM
x y A C D O B E
Kéo dài CO sao cho CO cắt DB tại E
Ta chứng minh được \(\Delta AOC=\Delta BOE\left(g-c-g\right)\)
\(\Rightarrow\) OC=OE và AC=BE
Mà \(B\in DE\) => BE+BD=DE => AC+BD=DE (1)
Do OC=OE mà \(O\in CE\) => O là trung điểm của CE. Mà \(OD\perp OC\Rightarrow OD\perp CE\) => OD là trung trực của CE => CD=ED (2)
Từ (1) và (2) => AC+BD=CD
Vậy CD=AC+BD
\(a,x^2-113=31\\ \Leftrightarrow x^2=144\\ \Leftrightarrow x=\pm12\\ Vay...\\ b,\sqrt{x+2,29}=2.3\\ \Leftrightarrow x+2,29=6^2\\ x=36-2,29=33,71\\ c,x^4=256\\ \Leftrightarrow x=\pm4\\ Vay...\\ d,\left(\sqrt{x}-1\right)^2=0,5625\\ \Leftrightarrow\sqrt{x}-1\in\left\{-0,75;0,75\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0,25;1,75\right\}\\ Vay...\\ e,2\sqrt{x}-x=0\\ \Leftrightarrow\sqrt{x}\left(2-\sqrt{x}\right)=0\\ \Leftrightarrow\sqrt{x}=0hoac2-\sqrt{x}=0\\ \Leftrightarrow x=0hoacx=4\\ f,x+\sqrt{x}=0\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x=0hoacx=1\)
a. x2−113=31
=> x2=144
=> x2=\(\sqrt{144}\)
=> x=\(\pm12\)
c.x4=256
=> x4=44
=> x=\(\pm4\)
GM=1/2GB
nên GM=1/2GD
=>M là trung điểm của DG
Xét ΔDGC có
GE là đường trung tuyến
CM là đường trung tuyến
GE cắt CM tại I
Do đó: I là trọng tâm của ΔDGC
a: Xét ΔMBC và ΔMAN có
MB=MA
\(\widehat{BMC}=\widehat{AMN}\)
MC=MN
Do đó: ΔMBC=ΔMAN