Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét tứ giác AKBC có
N là trung điểm của AB
N là trung điểm của KC
Do đó: AKBC là hình bình hành
Suy ra: AK=BC=2MC
a) Xét \(\Delta BACvà\Delta NAMcó\)
\(\widehat{BAC}=\widehat{NAM}\) ( đối đỉnh )
\(BA=NA\) ( gt )
\(CA=MA\) ( gt )
\(\Rightarrow\Delta BAC=\Delta NAM\) ( c.g.c )
\(\Rightarrow BC=MN\) ( 2 cạnh tương ứng )
mik chỉ lm đc v hoi xin lũi bn do chx hiểu cái ý 2 câu a
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét tứ giác AKBC có
N là trung điểm của AB
N là trung điểm của KC
Do đó: AKBC là hình bình hành
Suy ra: AK=BC=2MC
Mấy cái dạng này á bạn cứ kiếm cách tính của mấy cái đoạn đề bài cho rồi thế vào. rồi tính như số học á. Nếu hợp lý là chứng minh đc. Chủ yếu tự tìm mò.
a)
Sửa đề: Chứng minh ΔABM=ΔACM
Xét ΔABM và ΔACM có
AB=AC(gt)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
Ta có: AB=AC(gt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
b) Xét ΔABM vuông tại M và ΔDCM vuông tại M có
MB=MC(M là trung điểm của BC)
AM=DM(gt)
Do đó: ΔABM=ΔDCM(hai cạnh góc vuông)
⇒\(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong
nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)
Trên tia đối của tia MA lấy điểm D sao cho MA=MD.
Xét ΔMAB và ΔMDC có:
MA=MD; MB=MC; góc AMB=góc CMD.
⇒ΔMAB = ΔMDC (c.g.c)
⇒MA=CD (cạnh tương ứng)
⇒AB+AC=AC+CD > AD (BĐT tam giác) = 2.AM
Vậy \(AM< \frac{AB+AC}{2}\)(ĐPCM)
help me