K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
13 tháng 2 2019

1. A B C D M N K E F

a) + AN // CD \(\Rightarrow\dfrac{DM}{MN}=\dfrac{MC}{MA}\)

+ AD // CK \(\Rightarrow\dfrac{MK}{MD}=\dfrac{MC}{MA}\)

\(\Rightarrow\dfrac{MD}{MN}=\dfrac{MK}{MD}\) \(\Rightarrow MD^2=MN\cdot MK\)

b) + Qua M kẻ EF // AB // CD

+ AD // CK

=> \(\dfrac{DM}{MK}=\dfrac{AM}{MC}\Rightarrow\dfrac{DM}{DM+MK}=\dfrac{AM}{AM+MC}\) (1)

\(\Rightarrow\dfrac{DM}{DK}=\dfrac{AM}{AC}=\dfrac{AE}{AD}\)

+ ME // AN

\(\Rightarrow\dfrac{DM}{DN}=\dfrac{DE}{DA}\)

=> \(\dfrac{DM}{DN}+\dfrac{DM}{DK}=\dfrac{DE}{DA}+\dfrac{AE}{AD}=1\)

\(\Rightarrow DM\left(\dfrac{1}{DN}+\dfrac{1}{DK}\right)=1\)

\(\Rightarrow\dfrac{1}{DN}+\dfrac{1}{DK}=\dfrac{1}{DM}\)

* Cm : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

+ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\) ( theo tính chất dãy tỉ số bằng nhau )

\(\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\) ( để giải thích cho (1) )

17 tháng 1 2018

a) A B C D O M N

Áp dụng hệ quả Ta-let vào \(\Delta\)OAB và \(\Delta\)OCD(AB//CD)

=>\(\dfrac{AO}{OC}=\dfrac{BO}{DO}\)

=>\(\dfrac{AO}{OC+AO}=\dfrac{BO}{DO+BO}\)

=>\(\dfrac{AO}{AC}=\dfrac{BO}{BD}\)(1)

Áp dụng hệ quả Ta lét vào \(\Delta\)ADC và \(\Delta\)AMO(MN//CD)

=>\(\dfrac{MO}{DC}=\dfrac{AO}{AC}\)(2)

Áp dụng hệ quả Ta lét vào \(\Delta\)BCD và \(\Delta\)BNO(MN//CD)

=>\(\dfrac{NO}{DC}=\dfrac{BO}{BD}\)(3)

Từ (1), (2),(3):

=>\(\dfrac{MO}{DC}=\dfrac{NO}{DC}\)

=> MO=NO(dpcm)

CHÚC BẠN HỌC TỐT!

17 tháng 1 2018

mK GIẢI CÂU 1

a: XétΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

b: Xét ΔBAD có MN//AD
nên MN/AD=BM/BA(1)

Xét ΔBCA có MH//AC
nên MH/AC=BM/BA(2)

Từ (1) và (2) suy ra MN/AD=MH/AC

hay MN/MH=AD/AC

a: \(BC=\sqrt{13^2+20^2}=\sqrt{569}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{260\sqrt{569}}{569}\left(cm\right)\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

hay \(HD\cdot HC=AH^2\)

a: Xét ΔBAC có DF//AC

nên BF/FA=BD/DC=1/2

=>BF=1/2FA
=>AF/AB=2/3

Xét ΔCAB có DE//AB

nên CD/CB=CE/CA

=>CE/CA=2/3

=>CE=2/3CA

=>AE=1/3CA

=>AE/CE=1/2

=>AE/AC=1/3

b: \(\dfrac{AE}{EM}=\dfrac{AE}{\dfrac{1}{2}\cdot AC}=\dfrac{AE}{AC}\cdot\dfrac{1}{\dfrac{1}{2}}=\dfrac{1}{3}\cdot2=\dfrac{2}{3}=\dfrac{AF}{FB}\)

=>EF//BM

6 tháng 5 2020

Bạn còn cần giúp nx khôngg