Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ài 5 1/ Cho tam giác ABC nhọn có các đường cao AD,BE,CF cắt nhau tại h
a,tính tổng $\frac{\text{HD }}{AD}+\frac{\text{HE }}{BE}+\frac{\text{ }\text{HF }}{CF}$HDAD +HEBE +HFCF
b,CMR: BH.BE+CH.CF=BC2
c,CM: H cách đều 3 cạnh tam giác DEF
d,trên các đoạn HB,HC lấy các điểm M,N tùy y sao cho HM=CN . Chứng minh đường trung trức của đoạn thẳng MN luôn đi qua một điểm cố định
2/ Cho hình vuông ABCD.trên BC lấy các điểm E,qua A kẻ đường thẳng vuông góc với AE ,đường thẳng này cắt CD tại F.Gọi I là trung điểm của EF,AI cắt CD tại K .qua E kẻ đường thẳng song song với AB đường thẳng này cắt AI tại G.CM tứ giác EGFK là hình thoi
ai đó giúp mình với
Toán lớp 8

a, \(BH\perp AD\left(gt\right)\Rightarrow\widehat{BHA}=\widehat{BHD}=90^0\)
\(CK\perp AD\left(gt\right)\Rightarrow\widehat{AKC}=90^0\)
Xét \(\Delta BHD\)và \(\Delta CKD\) có:
\(\widehat{BHD}=\widehat{CKD}=90^0\)
\(\widehat{BDH}=\widehat{CDK}\) (đối đỉnh)
Do đó: \(\Delta BHD\infty\Delta CKD\left(g.g\right)\)
b, Xét \(\Delta ABH\) và \(\Delta ACK\) có:
\(\widehat{BAH}=\widehat{CAK}\) (vì AD là tia p/g của góc BAC)
\(\widehat{AHB}=\widehat{AKC}=90^0\)
Do đó: \(\Delta ABH\infty\Delta ACK\left(g.g\right)\)
Suy ra: \(\frac{AB}{AH}=\frac{AC}{AK}\) hay \(AB.AK=AC.AH\)
C, \(\Delta ABH\infty\Delta ACK\left(cmt\right)\Rightarrow\frac{BH}{CK}=\frac{AB}{AC}\left(1\right)\)
\(\Delta BHD=\Delta CKD\left(cmt\right)\Rightarrow\frac{DH}{DK}=\frac{BH}{CK}\left(2\right)\)
Từ (1) và (2), ta được: \(\frac{DH}{DK}=\frac{BH}{CK}=\frac{AB}{AC}\)
d, Gọi giao điểm giữa FM và BH là O và giao điểm giữa FM và CK là I.
Bạn chứng minh được tam giác BOF tại O và tam giác CIE vuông tại I
\(\Delta BOM=\Delta CIM\left(ch.gn\right)\Rightarrow BO=CI\)(2 cạnh tương ứng)
\(AD//FM\left(gt\right)\Rightarrow\hept{\begin{cases}\widehat{BAD}=\widehat{F}\\\widehat{DAC}=\widehat{IEC}\end{cases}}\)(đồng vị)
Suy ra: \(\widehat{F}=\widehat{IEC}\)
Mà \(\hept{\begin{cases}\widehat{F}+\widehat{FBO}=90^0\\\widehat{IEC}+\widehat{ICE}=90^0\end{cases}}\)
Nên \(\widehat{FBO}=\widehat{ICE}\)
Chứng minh được \(\Delta FBO=\Delta ECI\left(g.c.g\right)\Rightarrow BF=CE\)(2 cạnh tương ứng)
Chúc bạn học tốt.

Hih e tự vẽ nha:
a) Vì DM//BE nên tứ giác BDME là hình thang.
Lại có :\(\widehat{B}=\widehat{C}=60\)( tam giác ABC đều)
và \(\widehat{BEM}=\widehat{C}=60\)(Vì DE//AC và ACB=90 độ)
=>\(\widehat{BEM}=\widehat{B}=60\)
=>Tứ giác BDME là htc.
T/tự cho các hình còn lại.
b)Xét tam giác BDM và EMD:
BD=ME( BDME là htc)
góc BDM=góc EMD(Vì DM//BE và góc BEM=góc B=60 độ)
DM là cah chug
=> tg BDM=tg EMD (cgc)
=>BM=DE
C/m t/tự đối vói các tg AFD=AMF; tg CEM=tg FME
=> AM=DF;CM=EF
=>BM+AM+CM=DE+DF+EF= Chu vi của tam giác DEF
c) Ở câu a/ ta đã có góc B= góc E=60 nên suy ra đc các góc còn lại của htc BDME bằng 120 độ
T/tự cho 2 htc còn lại suy ra đc cả 3 góc đều =120 độ nên chúng = nhau
M A B C D E F
a, Chứng minh các tứ giác BDME,CFME,ADMF là các hình hang cân.
Ta có : MD//BC\(\Rightarrow\)BDME là hình thang cân .(1)
ME//AC\(\Rightarrow\widehat{MEB}=\widehat{ACB}\)(hai góc đồng vị )
mà \(\widehat{ACB}=\widehat{ABC}=60^o\)(do tam giác ABC đều)
\(\Rightarrow\widehat{MEB}=\widehat{ABC}=60^o\)(2)
Từ (1) và (2) => tứ giác BDME là hình thang cân.
Chứng minh tương tự ta cũng có : tứ giác CFME và ADMF là các hình thang cân.
b,Chứng minh chu vi của tam giác DEF bằng tổng các khoảng cách từ M đến các đỉnh của tam giác ABC . \(\left(P_{DME}=MB+MA+MC\right)\)
Ta có : \(P_{DEF}=DE+DF+EF\)
Lại có tứ giác BDME là hình thang cân (cmt) => DE = MB.
tứ giác CFME là hình thang cân (cmt)=> MC=EF
tứ giác DMF là hình thang cân (cmt)=> MA =DF.
\(\Rightarrow P_{DEF}=MA+MB+MC\)
=> đpcm.
c,Chứng minh \(\widehat{DME}=\widehat{DMF}=\widehat{EMF}\)
Trong hình thang cân BDME có : \(\widehat{DBE}=60^o\)
mà \(\widehat{DME}+\widehat{DBE}=180^o\Rightarrow\widehat{DME}=180^o-\widehat{DBE}=180^o-60^o=120^o\)
Chứng minh tương tự ta có : \(\widehat{DMF}=120^o;\widehat{EMF}=120^o\)
=>\(\widehat{DME}=\widehat{DMF}=\widehat{EMF}=120^o\)(đpcm)
Mình giải chi tiết rùi đấy nhé nếu có j hk hiểu cứ nhắn tin cho mk mk sẽ giải thích cho nhé.
Nên nhớ hình vẽ chỉ mang tính chất minh họa . Mình vẽ hình cho mấy bạn nhìn vô cho dể hiểu thôi chứ chưa chuẩn lắm đâu mấy bạn tự vẽ hình cho đẹp nhé ai thấy hay thì k cho mk nhé . CẢM ƠN NHIỀU .

a) Xét tam giác EBD và tam giác ABC ta có: \(\hept{\begin{cases}\widehat{EBD}-chung\\\widehat{DEB}=\widehat{BAC}\left(=90\right)\end{cases}}\)
\(\Rightarrow|\Delta EBD~\Delta ABC\left(g.g\right)\)
b) Từ 2 tam giác đồng dạng trên, ta có: \(\frac{EB}{AB}=\frac{BD}{BC}\Rightarrow BE.BC=BD.DA\left(dpcm\right)\)
c Xét tam giác BEA và tam giác BDC ta có: \(\hept{\begin{cases}\frac{EB}{AB}=\frac{BD}{BC}\left(cmt\right)\\\widehat{B}-chung\end{cases}}\)
\(\Rightarrow\Delta BEA~\Delta BDC\left(c.g.c\right)\Rightarrow\widehat{BAE}=\widehat{BCD}\left(dpcm\right)\)
a: Xét ΔABD và ΔACE có
\(\hat{ABD}=\hat{ACE}\)
\(\hat{BAD}=\hat{CAE}\) (AD là phân giác của góc BAC)
Do đó: ΔABD~ΔACE
b: ΔABD~ΔACE
=>\(\hat{ADB}=\hat{AEC}\)
mà \(\hat{ADB}+\hat{EDC}=180^0\) (hai góc kề bù)
và \(\hat{AEC}+\hat{CED}=180^0\) (hai góc kề bù)
nên \(\hat{EDC}=\hat{CED}\)
=>ΔECD cân tại C
(a) Chứng minh ( \triangle ABD \sim \triangle ACE )
(b) Chứng minh ( \triangle CDE ) là tam giác cân
(c) Chứng minh ( AE \cdot DF = AD \cdot DE )
(d) Chứng minh ( FH = 2FI )