K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2019

Hình bạn tự vẽ nha!

a) Xét \(\Delta ABC\) có:

\(E\) là trung điểm của \(AB\left(gt\right)\)

\(F\) là trung điểm của \(AC\left(gt\right)\)

=> \(EF\) là đường trung bình của \(\Delta ABC.\)

=> \(EF=\frac{1}{2}BC\) (định lí đường trung bình của tam giác)

Thay số vào ta được:

\(5=\frac{1}{2}BC\)

\(\Rightarrow BC=5:\frac{1}{2}\)

\(\Rightarrow BC=10cm.\)

Còn câu b) thì mình đang nghĩ nhé.

Chúc bạn học tốt!

18 tháng 9 2019

A B C E F H I

E;F lần lượt là tủng điểm của AB; AC (gt)

=> EF là đường trung bình của tam giác ABC (đn)

=> EF = 1/2BC (đl)

=> BC = EF.2

mà EF = 5 cm (gT)

=> BC = 5.2 = 10 (cm)

b, có E là trung điểm của AB (gt) => AE = 1/2AB (đn)    (1)

=> HE là trung tuyến của tam giác vuông AHB (đn) 

=> HE = 1/2 AB (đl)    (2)

(1)(2) => AE = HE 

=> E thuộc đường trung trực của AH (Đl)     (3)

làm tương tự với F trong tam giác AHC 

=> F thuộc đường trung trực của AH (Đl)    (4)

(3)(4) => EF là đường trung trực của AH (đl)

13 tháng 10 2021

a: Ta có: ΔAHB vuông tại H 

mà HE là đường trung tuyến ứng với cạnh huyền AB

nên HE=AE

hay E nằm trên đường trung trực của AH(1)

Ta có: ΔAHC vuông tại H

mà HF là đường trung tuyến ứng với cạnh huyền AC

nên HF=FA

hay F nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra FE là  đường trung trực của AH

hay FE\(\perp\)AH

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE ....
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do ABAC,HEAB,HFACAB⊥AC,HE⊥AB,HF⊥AC

ˆEAF=ˆAEH=ˆAFH=90o⇒EAF^=AEH^=AFH^=90o

AEHF→◊AEHF là hình chữ nhật

AH=EF

Mấy câu khác chưa học !

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath