K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2022

a: Xét ΔABC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

AM=BC/2=6,5cm

b: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

nên ADMElà hình chữ nhật

=>AM=DE

c: Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của BA

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do do: E là trung điểm của AC
Xét ΔABC có D,E lần lượt là trung điểm của AB,AC

nên DE là đường trung bình

=>DE//BC

=>BDEC là hình thang

18 tháng 12 2021

TK

 

a) Tam giác ABC cân tại A, AM là đường trung tuyến nên AM đồng thời là đường cao

⇒AM⊥BC⇒ˆAMC=90∘⇒AM⊥BC⇒AMC^=90∘

Xét tứ giác AMCK có:

AI=IC(gt)MI=IK(gt)AC∩MK=I(gt)AI=IC(gt)MI=IK(gt)AC∩MK=I(gt)

Suy ra tứ giác AMCK là hình bình hành (dhnb).

Lại có: ˆAMC=90∘(cmt)AMC^=90∘(cmt) nên hình bình hành AMCK là hình chữ nhật.

18 tháng 12 2021

a: Xét tứ giác AIMK có 

\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)

Do đó: AIMK là hình bình hành

mà \(\widehat{KAI}=90^0\)

nên AIMK là hình chữ nhật

28 tháng 1 2022

a, Xét tứ giác ADHE có : 

^A = ^ADH =  ^HEA = 900

Vậy tứ giác ADHE là hcn 

Vậy AH = DE ( 2 đường chéo bằng nhau ) 

b, Xét tam giác AEH và tam giác AHC có : 

^AEH = ^AHC = 900

^A _ chung 

Vậy tam giác AEH ~ tam giác AHC ( g.g ) 

=> AH/AC = AE/AH => AH^2 = AE.AC (1) 

tương tự với tam giác ADH ~ tam giác AHB (g.g)

=> AD/AH = AH/AB => AH^2=AD.AB (2) 

Từ (1) ; (2) suy ra AE.AC = AD.AB 

c, Xét tam giác ABH và tam giác CAH 

^AHB = ^CHA = 900

^ABH = ^CAH ( cùng phụ ^BAH )

Vậy tam giác ABH ~ tam giác CAH (g.g)

=> AH/CH = BH/AH => AH^2 = BH.CH 

=> CH = AH^2/BH = 144/9 = 16

=> BC = BH + CH = 25 cm 

Diện tích tam giác ABC là : SABC = 1/2 . AH . BC 

= 1/2 . 12 . 25 = 150 cm2

18 tháng 12 2021

a: Xét tứ giác ABMD có 

O là trung điểm của AM

O là trung điểm của BD

Do đó: ABMD là hình bình hành

Huyền Anh Lê Okk bạn nếu trên không hiểu chỗ nào thì hỏi nhé!

Chúc bạn thi tốt!

8 tháng 1 2020

Ôn tập : Tứ giác

22 tháng 11 2016

Hình học lớp 8

a. Tứ giác AMCK là HBH ( vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường ) và có góc M = 900 ( vì AM là đường trung trực của D cân cũng là đường cao) nên tứ giác AMCK là HCN.

b. Diện tích của hình chữ nhật biết AM = 12cm, MC = 5cm là :

SAMCK = 12. 5 = 60cm2

c. Để AMCK là HV thì cần AM = MC

khi đó ΔABC phải là tam giác vuông cân tại A để đường trung trực ứng với cạnh huyền bằng nửa cạnh huyền hay AM = MC.

22 tháng 11 2016

HÌNH VẼ NHƯ CỦA BẠN PHÙNG KHÁNH LINH NHÉ!!!!!1

a) Xét tứ giác AKCM có:

MI = MK (K là điểm đối xứng với M qua I (gt))

IA = IC (I là trung điểm AC (gt))

AC giao MK tại I

\(\Rightarrow\)AMCK là hình bình hành (dhnb) (1)

\(\Delta ABC\) cân tại A (gt)

AM là đường trung tuyến (gt)

\(\Rightarrow\) AM cũng là đường cao (t/c)

\(\Rightarrow\)\(\widehat{AMK} = 90^O\)(2)

Từ (1)(2) \(\Rightarrow\) AKCM là hình chữ nhật (dhnb)

b) Ta có công thức tính diện tích hình chữ nhật là:

\(S=a\cdot b\)

trong đó a là chiều dài (=AM=12cm)

b là chiều rộng (=MC=5cm)

\(\Rightarrow\) SAMCK = 12 * 5 = 60 (cm2)

c) Để AMCK là hình vuông

\(\Leftrightarrow\) AMCK vừa là hình chữ nhật, vừa là hình thoi

mà AMCK là hình chữ nhật (cmt)

Vậy ta cần tìm điều kiện để AMCK là hình thoi

Để AMCK là hình thoi

\(\Leftrightarrow\) AM = MC

\(MC=\frac{1}{2}BC\) (AM là đường trung tuyễn của \(\Delta ABC\)(gt))

\(\Leftrightarrow\) \(AM=\frac{1}{2}BC\)

\(\Leftrightarrow\) \(\Delta ABC\) vuông tại A (tính chất về đường trung tuyến ứng với cạnh huyền)

\(\Leftrightarrow\)\(\Delta ABC\) vuông cân tại A

Vậy muốn tứ giác AMCK là hình vuông thì \(\Delta ABC\) phải vuông cân tại A