K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

A C B H E F

a,

*Xét tam giác AHC và AHB, ta có:

AH chung

AB = AC (tam giác ABC cân tại A)

=> Tam giác AHC = tam giác AHB (cạnh huyền - cạnh góc vuông)

b,

Vì tam giác giác AHC = tam giác AHB

=> góc CAH = góc BAH (hai góc tương ứng)

*Xét tam giác AHF và tam giác AHE, ta có:

AH chung

góc FAH = góc EAH (cm trên)

=> tam giác AHF = tam giác AHE (cạnh huyền góc nhọn)

=> AE = AF (hai cạnh tương ứng)

27 tháng 1 2019

A B C H E F 1 2

a) Xét tam giác AHB và AHC vuông tại H có:

\(\widehat{B}=\widehat{C}\) (gt)

\(AB=AC\) (gt) (Do tam giác ABC cân tại A)

Suy ra tam giác AHB = tam giác AHC (cạnh huyền - góc nhọn)

b) *Chứng minh AE = AF

Do \(\Delta AHB=\Delta AHC\Rightarrow\widehat{HAB}=\widehat{HAC}\) (hai góc tương ứng)

Xét tam giác AEH và tam giác AFH có:

\(\widehat{HAB}=\widehat{HAC}\) (c/m trên)

\(AH\) cạnh chung.

Suy ra \(\Delta AEH=\Delta AFH\Rightarrow AE=AF\) (hai cạnh tương ứng)

c) Do \(\Delta AEH=\Delta AFH\Rightarrow\widehat{H_1}=\widehat{H_2}\) (đợi tí làm tiếp,đang suy nghĩ)

16 tháng 2 2017

XÉT TAM GIÁC AHB VÀ TAM GIÁC AHC CÓ

AB=AC(GT)

AH CHUNG

GÓC AHB = GÓC AHC

=>TAM GIÁC AHB=TAM GIÁC AHC (CGC)

C,XÉT TAM GIÁC AHE VÀ TAM GIÁC AFH CÓ

AH CHUNG

GÓC AEH=GÓC AFH =90*

A1=A2

=>TAM GIÁC AHE=TAM GIÁC AFH (GCG)

=>HE=HF (CẠNH TƯƠNG ỨNG) A B C H

26 tháng 2 2022

bạn ơi mờ quá

10 tháng 4 2020

Xét tgAHB và tg AHC có:

+AB=AC(gt)

+AH là cạnh chung

+góc BHA=góc CHA

=>tgAHB=tg AHC(c-g-c)

=>HB=HC,góc BAH=góc CAH

Các cặp tg vuông là:

BEH-HFC,VÌ HE và HC là 2 đường cao=>tgBEH và tgCFH là cặp tg vuông(g-c-g)

Gọi k là giao điểm của HA và EF,=>tgEHF là tg cân=>góc HEF=góc EFH=>EK=EF

=>MÀ AB=AC,EB=FC=>AE=AF=>Tg AEF là tg cân=>AK cũng là đường CAO

=> tgAEK và tg AFK là cặp tg vuông(c-g-c)

=>tg EKH Và tg EFH là cặp tg vuông(g-c-g)

=>tg AEH và tg AFH là cặp tg vuông(c-g-c)

Và cuối cùng là tg ABH và tg ACH(c-g-c)

+vì EF vuông góc với KH(cmt)và BC cũng vuông góc với KH=>EF//BC(ĐPCM)

12 tháng 4 2020

a, Xét tam giác AHB và tam giác AHC có:

            AH chung

            AB=AC (tam giác ABC cân tại A)

Vậy tam giác AHB= tam giác AHC (cạnh huyền-góc nhọn)

b,từ CMT: ta có:

      HB=HC

      Góc BAH= góc CAH

c,tam giác AHF=tam giác AHE(cạnh huyền AH chung,góc nhọn BAH =góc nhọn CAH)

   tam giác AHC= tam giác AHB(cạnh huyền AH chung, góc nhọn BAH =góc nhọn CAH)

   tam giác BEH =tam giác HFC(cạnh huyền BH=CH, góc nhọn EBH = góc nhọn FCH)

d,sorry bạn, câu này mik ko làm đc

3 tháng 3 2022

a.Xét tam giác vuông AHB và tam giác vuông AHC, có:

AB = AC ( ABC cân )

góc B = góc C ( ABC cân )

Vậy tam giác vuông AHB = tam giác vuông AHC ( cạnh huyền. góc nhọn)

=> HB = HC ( 2 cạnh tương ứng )

b.Xét tam giác vuông ADH và tam giác vuông AEH, có:

AH: cạnh chung

góc DAH = góc EAH ( AH là đường cao cũng là đường phân giác )

Vậy tam giác vuông ADH = tam giác vuông AEH

=> HD = HE ( 2 cạnh tương ứng )

=> tam giác HDE cân tại H

c.Xét tam giác vuông AEC và tam giác vuông ADB, có:

AB = AC ( ABC cân )

góc A: chung 

Vậy tam giác vuông AEC = tam giác vuông ADB ( cạnh huyền.góc nhọn)

=> AD = AE ( 2 cạnh tương ứng )

=> tam giác ADE cân tại A

=> AH vuông với DE, mà AH cũng vuông với BC

=> DE//BC ( DE ko phải DC nha bạn )

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó:ΔAHB=ΔAHC

Suy ra: HB=HC

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE

hay ΔHDE cân tại H

c: Ta có: ΔADH=ΔAEH

nên AD=AE

Xét ΔABC có AD/AB=AE/AC

nên DE//BC

18 tháng 3 2022

`Answer:`

Sửa đề phần c: Chứng minh KF//BC.

C H B A F K

a. Xét `\triangleAHB` và `\triangleAHC`

`AH` chung

`\hat{AHB}=\hat{AHC}=90^o`

`AB=AC`

`=>\triangleAHB=\triangleAHC(ch-cgv)`

b. Xét `\triangleFAH` và `\triangleKAH`

`AH` chung

`\hat{FAH}=\hat{KAH}`

`\hat{AFH}=\hat{AKH}=90^o`

`=>\triangleFAH=\triangleKAH(ch-gn)`

`=>HK=HF`

c. Theo phần b. `\triangleFAH=\triangleKAH`

`=>AF=AK`

`=>\triangleAFK` cân ở `A`

Ta có: `\triangleAFK` cân ở `A` và `\triangleABC` cân ở `A`

`=>\hat{AFK}=\hat{ABC}` mà hai góc này ở vị trí đồng vị \(\Rightarrow KF//BC\)

hình tự vẽ nhé.

xét: \(\Delta AHB\) VÀ   \(\Delta AHC\) CÓ:

\(\widehat{ABH}=\widehat{ACH}\)(DO TAM GIÁC ABC CÂN TẠI A)

\(AB=AC\)(DO TAM GIÁC ABC CÂN TẠI A)
\(\widehat{AHB}=\widehat{AHC}=90^0\)

\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-gn\right)\left(1\right)\)

b) TỪ (1)\(\Rightarrow BH=CH\)(2 cạnh tương ứng)

XÉT: \(\Delta KBH\)VÀ    \(\Delta FCH\) CÓ:

\(BH=CH\left(cmt\right)\)

​​\(\widehat{BKH}=\widehat{CFH}=90^0\)

\(\widehat{KBH}=\widehat{FCH}\left(\widehat{B}=\widehat{C}\right)\)

\(\Rightarrow\Delta KBH=\Delta FCH\left(ch-gn\right)\)

\(\Rightarrow HK=HF;BK=FC\)(2 cạnh tương ứng)(đpcm)

c) ta có:  \(AB=AC;;BK=FK\left(cmt\right)\)

\(\Rightarrow AB-BK=AC-FC\)

\(\Rightarrow AK=AF\Rightarrow\Delta AKF\) cân tại A

\(\Rightarrow\widehat{AKF}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)

lại có \(\Delta ABC\)cân tại A\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\left(3\right)\)

TỪ (2)VÀ (3)\(\Rightarrow\widehat{AKF}=\widehat{ABC}\left(=\frac{180^0-\widehat{A}}{2}\right)\)

​mà 2 góc này ở vị trí đồng vị \(\Rightarrow KF\\ BC\left(đpcm\right)\)

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:

  • Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
  • Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.

Lại 1 câu hỏi tào lao, cân tại A sao lại cs AB> AC chứ!

15 tháng 2 2020

a, xét tam giác ABH và tam giác ACH có AH chung

góc AHC = góc AHB = 90 

AB = AC do tam giác ABC cân tại A (gt)

=> tam giác ABH = tam giác ACH (ch-cgv)

b, ta giác ABH = tam giác ACH (câu a)

=> HB = HC (đn)

xét tam giác BHF và tam giác CHE có : góc BFH = góc CEH = 90

góc ABC = góc ACB do tam giác ABC cân tại A  (gt)

=> tam giác BHF = tam giác CHE (ch-gn)

=> BF = CE (đn)

AB = AC (câu a)

BF + FA = AB

CE + AE = AC

=> FA = AE

=> tam giác AFE cân tại  A (đn)

c, tam giác AFE cân tại A (Câu b)

=> góc AFE = (180 - góc BAC) : 2 (tc)

tam giác ABC cân tại A (gt) => góc ABC = (180 - góc BAC) : 2 (tc)

=> góc AFE = góc ABC mà 2 góc này đồng vị

=> FE // BC (định lí)