K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔACD có

AB=AC

BD=CD

AD chung

=>ΔABD=ΔACD

b: ΔABC cân tại A

mà AD là trung tuyến

nên AD vuông góc BC

d: DG là đường trung bình

=>DG//AC

3 tháng 5 2019

a) Xét ΔABD và ΔACD có:

           AD chung 

          góc ABD=góc ACD ( do AD là phân giác của góc BAC)

           AB=AC ( ΔABC cân tại A)

Do đó:ΔABD=ΔACD (c-g-c) (đpcm)

3 tháng 5 2019

  Ta có:

AD vuông góc BC(tính chất Δ vuông)

EH vuông góc BC (theo đầu bài)

=>AD//EH (cùng vuông góc với BC)

=>góc ADE=góc DEH (2 góc so le trong)

Lại có:ΔDEC cân theo câu c:

=>góc EDC=góc ECD 

mà góc ECD=góc ABD (ΔABC cân tại A)

=>góc EDC=góc ABD.

Xét ΔBAD có: góc ABD + góc BAD=90 độ (do ΔBAD vuông tại D)

 và ΔDEH có: góc EDH + góc DEH =90 độ (do ΔDEH vuông tại H)

=> góc BAD=góc DEH 

Mà góc BAD=góc DAE (AD là phân giác của góc A)

     góc ADE=góc DEH (2 góc so le trong)

=>góc DAE=góc ADE

=>ΔAED cân tại E

=>DE=AE

mà DE=EC (ΔDEC cân tại E)

=>AE=EC

=>E là trung điểm của AC

=>3 điểm B,G,E thẳng hàng (đpcm)

a) Xét ΔABD và ΔACD có

AB=AC(ΔBAC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung

Do đó: ΔABD=ΔACD(c-g-c)

b) Ta có: ΔABD=ΔACD(cmt)

nên BD=CD(hai cạnh tương ứng)

hay D là trung điểm của BC

Xét ΔABC có 

AD là đường trung tuyến ứng với cạnh BC(cmt)

CF là đường trung tuyến ứng với cạnh AB(gt)

AD cắt CF tại G(gt)

Do đó: G là trọng tâm của ΔABC(Tính chất ba đường trung tuyến của tam giác)

c) Ta có: ΔABD=ΔACD(cmt)

nên \(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

Xét ΔADC có

H là trung điểm của CD(gt)

HE//AD(cùng vuông góc với BC)

Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Ta có: ΔADC vuông tại D(cmt)

mà DE là đường trung tuyến ứng với cạnh huyền AC(E là trung điểm của AC)

nên \(DE=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay DE=EC

Xét ΔDEC có ED=EC(cmt)

nên ΔDEC cân tại E(Định nghĩa tam giác cân)

11 tháng 7 2021

Còn ý d nữa bạn .

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>DA=DE và BA=BE

=>ΔADE cân tại D và BD là trung trực của AE
c: AD=DE

DE<DC

=>AD<DC

d: AH vuông góc BC

DE vuông góc BC

=>AH//DE

góc AFD=góc BFH=90 độ-góc DBC

góc ADF=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AFD=góc ADF
=>ΔADF cân tại A

a: Xét ΔAMC và ΔDMB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)

MC=MB

Do đó: ΔAMC=ΔDMB

Suy ra: AC=DB và \(\widehat{MAC}=\widehat{MDB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//DB

hay DB\(\perp\)AB

Xét ΔCAB vuông tại A và ΔDBA vuông tại D có 

BA chung

CA=DB

Do đó: ΔCAB=ΔDBA

Suy ra: CB=DA

b: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

Suy ra: AD=10cm

3 tháng 9 2021

he

12 tháng 5 2022

 

`Tham` `Khảo:`

undefined

undefined

undefined

12 tháng 5 2022

a,

Ta có : D là trung điểm của BC

Mà Δ ABC cân tại A

=> AD là đường cao

=> AD là đường phân giác \(\widehat{BAC}\)

Xét Δ ABD và Δ ACD, có :

\(\widehat{ADB}=\widehat{ADC}=90^o\)

\(\widehat{ABD}=\widehat{ACD}\) (Δ ABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\) (AD là đường phân giác \(\widehat{BAC}\))

=> Δ ABD = Δ ACD (g.g.g)

b, Ta có : AD là đường cao (cmt)

=> AD ⊥ BC

c, Xét Δ AED và Δ AFD, có :

AD là cạnh chung

\(\widehat{AED}=\widehat{AFD}=90^o\)

\(\widehat{EAD}=\widehat{FAD}\) (AD là đường phân giác \(\widehat{BAC}\))

=> Δ AED = Δ AFD (g.c.g)

=> ED = FD

Xét Δ EBD vuông tại E và Δ FCD vuông tại F, có :

ED = FD

DB = DC (D là trung điểm BC)

=> Δ EBD = Δ FCD (ch - cgv)

d, Ta có : BC = 2DC (D là trung điểm BC)

=>12 = 2DC

=> DC = 6 (cm)

Xét Δ ADC vuông tại D, có :

\(AC^2=AD^2+DC^2\) (định lí Py - ta - go)

=> \(10^2=AD^2+6^2\)

=> \(64=AD^2\)

=> AD = 8 (cm)

8 tháng 4 2023

bài i gì

 

2 tháng 5 2024

Chịu 

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC...
Đọc tiếp

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và  AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)

0