Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D M H
a) Xét \(\Delta ADB\)và \(\Delta AEC\), có :
góc A chung
góc AEC = góc ADB = 90o
AB = AC (\(\Delta ABC\) cân tại A)
=> \(\Delta ADB=\Delta AEC\left(ch-gn\right)\)
b) Nối A với H
Xét \(\Delta AEH\) và \(\Delta ADH\) , có :
AH chung
góc AEH = góc ADH = 900
AC = AD ( \(\Delta ADB=\Delta AEC\) )
=> \(\Delta AEH=\Delta ADH\left(ch-cgv\right)\)
=> HE = HD ( 2 cạnh t/ứ)
c) Ta có : H là giao của 2 đường cao BD và CE trong \(\Delta ABC\)
=> H là trực tâm của \(\Delta ABC\)
Ta lại có : \(AM\perp BC\)
=> AM là đường cao thứ ba của \(\Delta ABC\)
=> AM đi qua H ( trực tâm )
d) Ta có : \(\Delta ADB=\Delta AEC\) (cmt)
=> BD = CE ; AE = AD
Áp dụng định lí Py-ta-go , ta có :
AB2= AD2 + BD2 = AE2 + EC2 ( vì BD = EC ; AE = AD )
AC2 = EA2 + EC2
BC2 = EC2 + BE2
Cộng vế với vế của ba đẳng thức trên , ta được :
AB2 + AC2 + BC2 = 3EC2 + 2EA2 + EB2 => đpcm
cho hỏi vậy câu a,b bạn biết làm rồi hả để mình đỡ phải làm hai câu đó
Hình vẽ:
A B C E D 1 2
Giải:
a) Xét tam giác ABD và tam giác AED, ta có:
\(\widehat{A_1}=\widehat{A_2}\) (AD là tia phân giác của góc A)
AD là cạnh chung
\(AB=AE\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta AED\left(c.g.c\right)\)
\(\Rightarrow DB=DE\) (Hai cạnh tương ứng)
\(\Rightarrowđpcm\)
b) Ta có:
\(AB=AE\)
Mà \(E\in AC\)
Nên để \(\Delta ABD=\Delta ADC\) thì phải thêm điều kiện \(AB=AC\)
Hay nói cách khác theo hình vẽ là \(C\equiv E\).
c) Để \(DE\perp AC\)
\(\Leftrightarrow\widehat{AED}=90^0\)
Mà \(\widehat{AED}=\widehat{ABD}\) ( \(\Delta ABD=\Delta AED\))
Nên để \(DE\perp AC\) thì phải thêm điều kiện \(\widehat{ABD}=90^0\).
Chúc bạn học tốt!
cảm ơn vì câu trả lời của bạn bạn có thể giúp mình câu hỏi dưới đây ko ạ cảm ơn bạn rất nhiều
Hình tự vẽ.
a) Xét \(\Delta APE\) vuông tại P và \(\Delta APH\) vuông tại H có:
\(PE=PH\left(gt\right)\)
AP chung
\(\Rightarrow\Delta APE=\Delta APH\left(cgv-cgv\right)\)
b) Vì \(\Delta APE=\Delta APH\)
\(\Rightarrow\widehat{EAP}=\widehat{HAP}\) \(=90^o\)
Tương tự: \(\Delta AQF=\Delta AQH\left(cgv-cgv\right)\)
\(\Rightarrow\widehat{FAQ}=\widehat{HAQ}\) \(=90^o\)
Khi đó: \(\widehat{EAP}+\widehat{HAP}+\widehat{FAQ}+\widehat{HAQ}=90^o+90^o+90^o+90^o\)
\(=180^o\)
\(\Rightarrow E,A,F\) thẳng hàng.
a.Cho ABC cân tại C => CA=CB
Xét ΔCHA và ΔCHB có:
CA=CB
CH chung
góc CHA=CHA=90 độ
=> ΔCHA=ΔCHB ( cạnh huyền-cạnh góc vuông)
b. ΔCHA=ΔCHB => BH=HA
mà BH+HA=BA=8
=> BH=HA=4
Xét tam giác BHC vuông tại H,ta có:
\(CH^2=BC^2-BH^2\)
=> \(CH^2=5^2-4^2\)
=> \(CH^2=9\)
=> CH=3
Hình : TỰ VẼ .
Bài làm :
Giả thiết , kết luận tự làm nhé.
a. Xét \(\Delta CHA\) và \(\Delta CHB\) , ta có :
CH cạnh chung
H = 90° (CH \(\perp\) AB)
CA = CB (gt)
=> \(\Delta CHA\) = \(\Delta CHB\) (cạnh huyền - cạnh góc vuông)
....Còn nhiều cách bài này nhưng sợ cách này không biết . Bạn có thể xem sách tập 2 để hiểu hơn về cách này nhé.
=> AH = BH (2 cạnh tương ứng)
=> AH = BH = \(\dfrac{AB}{2}=\dfrac{8}{2}=4\left(cm\right)\)
b. Trong \(\Delta\) CHB , có :
H = 90°
=> \(CH^2\) = \(BC^2-HB^2=5^2-4^2=9\)
=> \(CH^2=\sqrt{9}=3\) (Vì CH >0)
c.
bạn có thể giúp mình nhữngcâu sau được ko ạ????cảm ơn bạn rất nhiều
c, Vì H là giao của 2 đường cao BD, CE trong tam giác ABC
=> H là trực tâm của tam giác ABC
Mà AM vuông góc với BC
=> AM là đường cao thứ 3 của tam giác ABC
=> AM đi qua trực tâm H
d. Có tam giác ABD = tam giác ACE ( cạnh huyền-góc vuông)
=> AD = AE ; BD = CE
Áp dụng định lí Pi-ta-go có:
\(AB^2=AD^2+BD^2=AE^2+EC^2\) ( VÌ AD = AE ; BD = EC )
\(AC^2=EA^2+EC^2\)
\(BC^2=EC^2+BE^2\)
Cộng vế với vế 3 đẳng thức trên ta được:
\(AB^2+AC^2+BC^2=3EC^2+2EA^2+EB^2\) ( đpcm)
cảm ơn bạn nhiều lắm