Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)
BC=13cm
=>\(AC=3\sqrt{13}\left(cm\right)\)
a: Xét ΔABC cân tại A có AH là đường cao
nên H là trung điểm của BC
hay HB=HC
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE
hay ΔHDE cân tại H
a) Theo định lý Pi-ta-go
Ta có : \(\sqrt{20^2+48^2}\)=52
Vậy tam giác vuông tại A.
b
A. áp dụng định lý pytago trong tam giác abc ta có:
(ab2+ac2)=bc2
=>202+482=522(hợp lí)
=>tam giác abc vuông tại A
B. ta có BH=CH=52:2=26
Xét tam giác ahc có :
CH2+AH2=AC2
=>AH2=AC2-CH2
=>AH2=482-262
=>AH2=1628
=>AH=40.34.....
a/ ta có BC2=522=2704
AB2+AC2=20^2+48^2=400+2304=2704
vì 2704=2704 nên BC2=AB2+AC2 hay tam giác ABC vuông tại A
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(gt)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: HB=HC(hai cạnh tương ứng)
b) Ta có: HB=HC(cmt)
mà HB+HC=BC(H nằm giữa B và C)
nên \(HB=HC=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)
hay AH=3(cm)
Vậy: AH=3cm
c) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Ta có: ΔABC cân tại A(cmt)
nên \(\widehat{B}=\widehat{C}\)(hai góc ở đáy)
Xét ΔDBH vuông tại D và ΔECH vuông tại E có
HB=HC(cmt)
\(\widehat{B}=\widehat{C}\)(cmt)Do đó: ΔDBH=ΔECH(cạnh huyền-góc nhọn)
⇒HD=HE(Hai cạnh tương ứng)
Xét ΔHDE có HD=HE(cmt)
nên ΔHDE cân tại H(Định nghĩa tam giác cân)
a: AC=căn BC^2-AB^2=3cm
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>BA=BH
c: Xét ΔBHI vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBI chung
=>ΔBHI=ΔBAC
=>BI=BC
Xét ΔBIC có BA/BI=BH/BC
nên AH//IC
a) Fix: \(\left\{{}\begin{matrix}BC=52cm\\AB=2cm\\AC=48cm\end{matrix}\right.\) Có thể dễ dàng thấy sai đề từ \(AB+AC< BC\) và \(\Delta ABC\) không vuông như điều cần chứng minh
Ta có hình vẽ: B C A H
a) \(AB^2+AC^2=20^2+48^2=2704=52^2=BC^2\)
Vậy \(\Delta ABC\) vuông tại \(A\)
b) Áp dụng tính chất: Trong tam giác vuông bình tích 2 cạnh góc vuông bằng cạnh huyền nhân với đường cao
Có thể dễ dàng tìm được AH và S_ABC