Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Tam giác ABC vuông tại A => góc B + góc C = 90o => góc B; góc C phụ nhau
+) tam giác ABH vuông tại H => góc B + góc BAH = 90o => góc B; góc BAH phụ nhau
+) Tam giác AHC vuông tại H => góc C + góc HAC = 90o => góc C; góc HAC phụ nhau
=> góc C = góc BAH (cùng phụ với góc B)
góc B = góc HAC (cùng phụ với góc C)
1:
a: Xét ΔABD vuông tại D và ΔCAE vuông tại E có
AB=CA
góc ABD=góc CAE
=>ΔABD=ΔCAE
b: ΔABD=ΔCAE
=>BD=AE: AD=CE
=>BD-CE=BD-AD=DE
x y A O H B K C
a, Xét \(\Delta\)OKA và \(\Delta\)OKC có:
OK : cạnh chung
CK = AK (gt)
góc OKA = góc OKC = 900
=> \(\Delta\)OKA = \(\Delta\)OKC ( c - g - c)
=> OA = OC ( 2 cạnh tương ứng ) (1)
Xét \(\Delta\)OHA và \(\Delta\)OHB có:
OH : cạnh chung
AH = BH (gt)
góc OHA = góc OHB = 900
=> \(\Delta\)OHA = \(\Delta\)OHB ( c - g - c)
=> OA = OB ( 2 cạnh tương ứng ) (2)
Từ (1), (2)
=> OB = OC (dpcm)
b,
Vì \(\Delta\)OKA = \(\Delta\)OKC ( c - g - c)
=> góc COK = góc AOK = \(\dfrac{1}{2}\)góc AOC
Vì \(\Delta\)OHA = \(\Delta\)OHB ( c - g - c)
=> góc AOH = góc BOH= \(\dfrac{1}{2}\)góc AOB
Ta có:
góc AOC + góc AOB = góc BOC
=> \(\dfrac{1}{2}\)góc AOC + \(\dfrac{1}{2}\)góc AOB = \(\dfrac{1}{2}\)góc BOC
=> góc AOK + góc AOH = \(\dfrac{1}{2}\)góc BOC
=> góc xOy = \(\dfrac{1}{2}\)góc BOC
hay t = \(\dfrac{1}{2}\)góc BOC
=> góc BOC = 2t
Vậy BOC = 2t
a: \(\widehat{B}=\widehat{HAC}\)