Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D F 1 2
a) Vì BC2 = 102 = 100
AB2 + AC2 = 62 + 82 = 100
Nên AB2 + AC2 = BC2
Do đó: \(\Delta ABC\) vuông tại A
b) Xét hai tam giác vuông ABD và EBD có:
BD: cạnh huyền chung
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
Vậy: \(\Delta ABD=\Delta EBD\left(ch-gn\right)\)
Suy ra: DA = DE (hai cạnh tương ứng)
c) \(\Delta DAF\) vuông tại A
=> DF > DA (đường vuông góc ngắn hơn đường xiên)
Mà DA = DE
Do đó: DF > DE (đpcm)
d) Xét hai tam giác vuông ABC và EBF có:
AB = EB (\(\Delta ABD=\Delta EBD\))
\(\widehat{B}\): góc chung
Vậy: \(\Delta ABC=\Delta EBF\left(cgv-gn\right)\)
\(\Rightarrow\) BF = BC (hai cạnh tương ứng)
\(\Rightarrow\) \(\Delta BFC\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thời là đường trung trực của FC
Do đó: BD là đường trung trực của đoạn thẳng FC (đpcm).
a) Ta có :
\(6^2+8^2=10^2\\ \Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A ( Định lí Pi-ta-go đảo )
b) Xét \(\Delta DBA\) và \(\Delta DBE\),có :
Chung cạnh BD
\(\widehat{DBA}=\widehat{DBE}\)( BD là tia phân giác )
\(\Rightarrow\Delta BDA=\Delta BDE\left(ch-gn\right)\\ \Rightarrow DA=DE\)
A I B C D H E 1 2 Hình ảnh vẫn chỉ mang tính chất minh họa
a) +) Xét \(\Delta\)BID và \(\Delta\)BIC có
BI : cạnh chung
\(\widehat{B_1}=\widehat{B}_2\) ( gt)
BD = BC ( gt)
=> \(\Delta\)BID = \(\Delta\)BIC (c-g-c)
b) +) Xét \(\Delta\)BEC và \(\Delta\) BED có
BE: cạnh chung
\(\widehat{B_1}=\widehat{B}_2\) ( gt)
BC = BD ( gt)
=> \(\Delta\)BEC = \(\Delta\)BED (c-g-c)
=> EC = ED ( 2 cạnh tương ứng )
c) Theo câu a ta có \(\Delta\)BID = \(\Delta\)BIC
=> \(\widehat{BID}=\widehat{BIC}\) ( 2 góc tương ứng ) (1)
+)Mà \(\widehat{BID}+\widehat{BIC}=180^o\) (2) ( 2 góc kề bù )
Từ (1) và (2) => \(\widehat{BID}=\widehat{BIC}=\frac{180^o}{2}=90^o\)
+) Lại có BI cắt CD tại I ( gt)
=> BI \(\perp\) CD tại I
+) Mặt khác ta có
\(\hept{\begin{cases}BI\perp CD\left(cmt\right)\\AH\perp CD\left(gt\right)\end{cases}}\)
=> BI // AH ( đpcm)
d) Ta có \(\widehat{B_1}=\widehat{B_2}=\frac{\widehat{ABC}}{2}\)
Mà \(\widehat{ABC}=70^o\) ( gt)
=> \(\widehat{B_1}=\widehat{B_2}=\frac{\widehat{ABC}}{2}=\frac{70^o}{2}=35^o\)
+)Theo câu c ta có BI // AH
=> \(\widehat{HAD}=\widehat{B_1}=35^o\) ( 2 góc so le trong )
+) Xét \(\Delta\)BIC vuông tại I
\(\Rightarrow\widehat{B_2}+\widehat{BCD}=90^o\) ( tính chất tam giác vuông )
\(\Rightarrow\widehat{BCD}+35^o=90^o\)
\(\Rightarrow\widehat{BCD}=55^o\)
Vậy \(\widehat{DAH}=35^o;\widehat{BCD}=55^o\)
Xong rồi nha ___ mỏi hết cả tay rồi
Chúc bạn tui học tốt
Takiagawa Miu_
A B C D M K F E N O
cau a:CB;AN là trung tuyến ;CB/MB=2/3
> M trọng tâm tam giác ACD > vậy A;M;N thẳng hàng
câu b:DM là đường trung tuyến thứ 3> K trung diemAC.
cậu c: tương tự AF;CE;MK đồng qui tại O là trọng tâm tam giác ACM
c) Δ ABK = Δ ADK (câu b) => BK = DK (2 cạnh tương ứng)
và ABK = ADK (2 góc tương ứng)
Mà ABK + KBE = 180o (kề bù)
ADK + KDC = 180o (kề bù)
nên KBE = KDC
Xét Δ KBE và Δ KDC có:
BE = CD (gt)
KBE = KDC (cmt)
BK = DK (cmt)
Do đó, Δ KBE = Δ KDC (c.g.c)
=> BKE = DKC (2 góc tương ứng)
Lại có: BKD + DKC = 180o (kề bù)
Do đó, BKE + BKD = 180o
=> EKD = 180o
hay 3 điểm E, K, D thẳng hàng (đpcm)
Silver bulletsoyeon_Tiểubàng giảiPhương AnNguyễn Huy TúHoàng Lê Bảo NgọcTrương Hồng Hạnh giải giúp mk bài hình đó đi
a, Ta có: \(A=\left|x-1\right|+\left|x-2017\right|=\left|x-1\right|+\left|2017-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A\ge\left|x-1+2017-x\right|=\left|-2016\right|=2016\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-1\ge0\\2017-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\le2017\end{matrix}\right.\Rightarrow1\le x\le2017\)
Vậy \(MIN_A=2016\) khi \(1\le x\le2017\)
b, Ta có: \(\left\{{}\begin{matrix}\left(x-5\right)^2\ge0\\\left|x-5\right|\ge0\end{matrix}\right.\Rightarrow\left(x-5\right)^2+\left|x-5\right|\ge0\)
\(\Rightarrow B=\left(x-5\right)^2+\left|x-5\right|+2014\ge2014\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-5\right)^2=0\\\left|x-5\right|=0\end{matrix}\right.\Rightarrow x=5\)
Vậy \(MIN_B=2014\) khi x = 5
b may cho chú là chung nghiệm là x=5 nếu (x-6)^2+|x-5| thì sao? cần phải nhớ (x-6)^2=|x-6|^2 sau đó áp dụng |a|+|b|>=|a+b|
x O y A B C
a) Ta có OA là tia phân giác của góc xOy
=>\(\widehat{COA}=\widehat{AOB}=\dfrac{xOy}{2}\)
\(\Rightarrow\widehat{COA}=\widehat{AOB}=\dfrac{60}{2}\)
\(\Rightarrow\widehat{COA}=\widehat{AOB}=30^0\)
b) Ta có \(OB//AC\)\(\Rightarrow\widehat{AOB}=\widehat{OAC}=30^0\)( 2 góc so le trong )
\(OC//AB\Rightarrow\widehat{OAC}=\widehat{BAO}=30^0\)( 2 góc so le trong )
c) Vì \(\widehat{OAC}=\widehat{BAO}=30^0\Rightarrow AO\)là phân giác của \(\widehat{BAC}\)
Đề sai rồi bạn