Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=4x^2+3x+1\)
\(g\left(x\right)=3x^2-2x+1.\)
a) \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(\Rightarrow h\left(x\right)=\left(4x^2+3x+1\right)-\left(3x^2-2x+1\right)\)
\(\Rightarrow h\left(x\right)=4x^2+3x+1-3x^2+2x-1\)
\(\Rightarrow h\left(x\right)=\left(4x^2-3x^2\right)+\left(3x+2x\right)+\left(1-1\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x.\)
b) Ta có \(h\left(x\right)=x^2+5x.\)
Đặt \(x^2+5x=0\)
\(\Rightarrow x.\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x=0\) và \(x=-5\) là các nghiệm của đa thức \(h\left(x\right).\)
Chúc bạn học tốt!
Cho đa thức \(f\left(x\right)=a.x^2+b.x+c\)
Tính giá trị \(f\left(-1\right)\)biết rằng \(a+c=b+2018\)
Ta có : \(f\left(-1\right)=\left(-1\right)^2.a+\left(-1\right).b+c=a-b+c\)
Do a + c = b + 2018 , suy ra
\(f\left(-1\right)=b+2018-b=2018\)
Vậy ............
a) \(L=\left(x-1\right)^2+\left(x+5\right)^2\)
Ta có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(x+5\right)^2\ge0\end{cases}}\)
\(\Rightarrow L=0\Leftrightarrow\)\(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(x+5\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\x=-5\end{cases}}\left(L\right)\)
Vậy đa thức L vô nghiệm
d) \(M=x^2-5x-6\)
\(\Leftrightarrow M=x^2-6x+x-6\)
\(\Leftrightarrow M=x\left(x-6\right)+\left(x-6\right)\)
\(\Leftrightarrow M=\left(x+1\right)\left(x-6\right)\)
M = 0 \(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=6\end{cases}}\)
Vậy đa thức M có hai nghiệm là -1 hoặc 6
1.
a, (x-5)2
Ta có x2 luôn \(\ge\) 0 với mọi x, suy ra: (x-5)2 \(\ge\) 0 với mọi x
Nên: (x-5)2 \(\ge\) 0 với mọi x
Suy ra: đa thức này không có nghiệm.
\(f\left(x\right)=ax^2+bx+c\)
\(f\left(2\right)=4a+2b+c=0\)
\(f\left(-2\right)=4a-2b+c=0\)
=> 4a + 2b + c = 4a - 2b + c
=> 2b = -2b
=> 4b = 0
=> b = 0
Từ đề bài , ta có : a = c + 3
Theo f(2) , ta có :
\(f\left(2\right)=4a+0+a+3=0\)
\(f\left(2\right)=5a+3=0\)
\(\Rightarrow a=-\frac{3}{5}\)
Làm tương tự với f(-2) , a cũng giống kết quả
\(\Rightarrow c=a-3=\frac{-3}{5}-3=-\frac{18}{5}\)
Vậy a,b,c lần lượt là ....
f(0) = a.02 + b. 0 + c = 2016
<=> c =2016
f (1) = a.12 + b.1 + c =2017
<=> a + b =1 (1)
f ( -1 ) = a (-1)2 + b . (-1) +c =2018
<=> a -b =2 (2)
Từ (1),(2) <=> a = 1,5 ; b = -0,5
=> F(x) = 1,5x2 -0,5 x + 2016
F (2) = 1,5 . 22 -0,5 .2 +2016
= 6 -1 +2016 =2021
Ta có:
\(F\left(0\right)=a.0^2+b.0+c=2016\)
\(\Rightarrow c=2016\)
\(F\left(1\right)=a.1^2+b.1+c=2017\)
\(\Rightarrow a+b=1\)
\(F\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=2018\)
\(\Rightarrow a-b=2\)
Vì a + b =1 và a - b = 2 nên \(\Rightarrow a=\frac{3}{2};b=\frac{-1}{2}\)
Vậy \(F\left(2\right)=\frac{3}{2}.2^2-\left(\frac{-1}{2}\right).2+2016=2023\)
F57=804