\(\times x^2\)+b\(\times x\)+c với a,b,c
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 3 2023

Ta có: \(f\left(-2\right)=4a-2b+c\)

 \(f\left(3\right)=9a+3b+c=13a+b+2c-4a+2b-c=-4a+2b-c\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=\left(4a-2b+c\right)\left(-4a+2b-c\right)=-\left(4a-2b+c\right)^2\le0\) (đpcm)

 

16 tháng 8 2017

Ta có \(f\left(-2\right)\times f\left(-3\right)=\left(4a-2b+c\right).\left(9a+3b+c\right)=\left(4a-2b+c\right).\left[13a+b+2c-\left(4a-2b+c\right)\right]\)

\(13a+b+2c=0\) theo giả thiết.

\(\Rightarrow f\left(-2\right)\times f\left(3\right)=-\left[\left(4a-2b+c\right)^2\right]\)

\(\left(4a-2b+c\right)^2\) luôn \(\ge0\Rightarrow f\left(-2\right)\times f\left(3\right)\) \(\le0\)

18 tháng 8 2017

Thanks bạn nhahihi

2 tháng 12 2018

\(f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c=4a-2b+c\)

\(f\left(3\right)=a.3^2+b.3+c=9a+3b+c\)

\(f\left(-2\right)+f\left(3\right)=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\Rightarrow f\left(-2\right).f\left(3\right)\le0\)

5 tháng 4 2017

a) Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)

\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)

\(=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)

Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)

b) Sửa đề:

Biết \(5a+b+2c=0\)

Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)

\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)

\(=5a+b+2c=0\)

\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)

\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)

Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)

DD
22 tháng 4 2022

\(f\left(2\right)=a.2^2+b.2+c=4a+2b+c\)

\(f\left(-5\right)=a.\left(-5\right)^2+b.\left(-5\right)+c=25a-5b+c\)

\(f\left(2\right)+f\left(5\right)=4a+2b+c+25a-5b+c=29a-3b+2c\)

\(=\left(29a+2c\right)-3b=3b-3b=0\)

\(\Leftrightarrow f\left(2\right)=-f\left(-5\right)\)

\(\Leftrightarrow f\left(2\right)f\left(-5\right)\le0\).

 

3 tháng 1 2019

y = f(x) = a . x2 + b . x + c ( a , b , c ∈ Q )

+) f(-2) = a . ( -2 )2 + b . ( -2 ) + c

= a . 4 + b . ( -2 ) + c

= 2 ( 2a - b + c ) ⇒ y = 2( 2a - b + c )

+) f(-3) = a . ( -3 )2 + b . ( -3 ) + c

= a . 9 - b . 3 + c

= 3 ( 3a - b + c ) ⇒ y = 3( 3a - b + c )

AH
Akai Haruma
Giáo viên
5 tháng 7 2020

Lời giải:

Ta có:

$f(-1)=a-b+c$

$f(2)=4a+2b+c$

Cộng lại ta có: $f(-1)+f(2)=5a+b+2c=0$

$\Rightarrow f(-1)=-f(2)$

$\Rightarrow f(-1)f(2)=-f(2)^2\leq 0$ (đpcm)