Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(M\left(x\right)=\left(5x^3-7x^2+x+7\right)-\left(7x^3-7x^2+2x+5\right)+\left(2x^3+4x+1\right)\)
\(=5x^3-7x^2+x+7-7x^3+7x^2-2x-5+2x^3+4x+1\)
\(=3x+3\)
b, Bậc của M(x) là 1
\(3x+3=0\Leftrightarrow3x=-3\Leftrightarrow x=-1\)
Nghiệm của M(x) = -1
3) tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2
\(\Rightarrow M\left(x\right)=x^2-mx+2\)
\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)
\(\Leftrightarrow1-m\left(-1\right)=-2\)
\(\Leftrightarrow m\left(-1\right)=3\)
\(\Leftrightarrow m=-3\)
vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)
4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)
\(\Leftrightarrow K\left(2\right)=a+b=3\)
\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)
\(\Leftrightarrow a+\left(-b\right)+c2=5\)
ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
vậy \(a=1;b=2;c=3\)
1. a) Sắp xếp :
f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9
g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9
b) h(x) = f(x) + g(x)
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9
= ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )
= 3x2- 3x
c) h(x) có nghiệm <=> 3x2 - 3x = 0
<=> 3x( x - 1 ) = 0
<=> 3x = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 1
Vậy nghiệm của h(x) là x= 0 hoặc x = 1
2. D(x) = A(x) + B(x) - C(x)
= 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )
= 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2
= ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 )
= 9x3
b) D(x) có nghiệm <=> 9x3 = 0 => x = 0
Vậy nghiệm của D(x) là x = 0
3. M(x) = x2 - mx + 2
x = -1 là nghiệm của M(x)
=> M(-1) = (-1)2 - m(-1) + 2 = 0
=> 1 + m + 2 = 0
=> 3 + m = 0
=> m = -3
Vậy với m = -3 , M(x) có nghiệm x = -1
4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )
K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1
=> a + 0b + c.0.(-1) = 1
=> a + 0 = 1
=> a = 1
K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3
=> 1 + 1b + c.1.0 = 3
=> 1 + b + 0 = 3
=> b + 1 = 3
=> b = 2
K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5
=> 1 + 5(-1) + c(-1)(-2) = 5
=> 1 - 5 + 2c = 5
=> 2c - 4 = 5
=> 2c = 9
=> c = 9/2
Vậy a = 1 ; b = 2 ; c = 9/2
a) \(P_{\left(x\right)}=x^3-2x-2x^5-3x^3+4x^4-1\)
\(P_{\left(x\right)}=-2x^5+4x^4-\left(3x^3-x^3\right)-2x-1\)
\(P_{\left(x\right)}=-2x^5+4x^4-2x^3-2x-1\)
\(Q_{\left(x\right)}=4x^4-2x-x^5+7x-1\)
\(Q_{\left(x\right)}=-x^5+4x^4+\left(7x-2x\right)-1\)
\(Q_{\left(x\right)}=-x^5+4x^4+5x-1\)
b) bn ơi M(x) là đa thức nào z! chỉ cho mk vs, để mk lm
b) tìm đa thức M(x) biết P(x)- M(x) = Q(x)
ta có: \(P_{\left(x\right)}-M_{\left(x\right)}=Q_{\left(x\right)}\)
\(\Rightarrow M_{\left(x\right)}=P_{\left(x\right)}-Q_{\left(x\right)}\)
\(\Rightarrow M_{\left(x\right)}=\left(-2x^5+4x^4-2x^3-1\right)-\left(-x^5+4x^4+5x-1\right)\)
\(M_{\left(x\right)}=-2x^5+4x^4-2x^3-1+x^5-4x^4-5x+1\)
\(M_{\left(x\right)}=-\left(2x^5-x^5\right)+\left(4x^4-4x^4\right)-2x^3-5x+\left(1-1\right)\)
\(M_{\left(x\right)}=-x^5-2x^3-5x\)
c) ta có: \(M_{\left(x\right)}=-x^5-2x^3-5x\)
để \(M\left(x\right)=-x^5-2x^3-5x=0\)
\(\Rightarrow-x^5-2x^3-5x=0\)
\(\Rightarrow x.\left(-x^4-2x^2-5\right)=0\)
\(\Rightarrow x=0\) \(\Rightarrow-x^4-2x^2-5=0\)
mà 2x^2 là số nguyên ( x^2 luôn luôn là một số nguyên)
\(\Rightarrow-x^4+\left(-2x^2\right)+\left(-5\right)\ne0\)
=> chỉ có 1 giá trị của x để M(x) = 0
a: \(A\left(x\right)=x^2-3x-3x^2+6x+17\)
\(=-2x^2+3x+17\)
\(B\left(x\right)=3x^2-7x+3-3x^2+6x-12\)
\(=-x-9\)
b: \(A\left(x\right)+B\left(x\right)=-2x^2+3x+17-x-9=-2x^2+2x+8\)
c: \(A\left(x\right)-B\left(x\right)=-2x^2+3x+17+x+9=-2x^2+4x+26\)
a)
P(x)=(4x3-2x2-7x+2017)+(-4x3+x2+17x-2017)
=4x3+(-2x2)+(-7x)+2017+(-4x3)+x2+17x+(-2017)
=-x2+10x
Q(x)=(4x3-2x2-7x+2017)-(-4x3+x2+17x-2017)
=4x3+(-2x2)+(-7x)+2017+4x3=(-x2)+(-17x)+2017
=8x3-3x2-24x+4034
b)P(x)=-x2+10x
Ta có:-x2+10x=0
-1x2+10x=0
x(-1x+10)=0
TH1:x=0
TH2:-1x+10=0
=>x=10
Vậy x=0 và 10 là nghiệm đa thức P(x)