\(A\left(x\right)=x+x^2+x^3+...+x^{100}\)

a) CM:x=-1 là ngiệm của đa...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

a) Ta có: \(A\left(x\right)=x+x^2+...+x^{100}\)
\(\Rightarrow A\left(-1\right)=\left(-1\right)+\left(-1\right)^2+...+\left(-1\right)^{99}+\left(-1\right)^{100}\)

\(=\left(-1\right)+1+...+\left(-1\right)+1\) ( 100 số )

\(=0\)

Vậy x = -1 là nghiệm của đa thức A(x)

b) \(A\left(x\right)=x+x^2+...+x^{100}\)

\(\Rightarrow A\left(\dfrac{1}{2}\right)=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{100}\)

\(=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\)

\(\Rightarrow2A\left(\dfrac{1}{2}\right)=1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\)

\(\Rightarrow2A\left(\dfrac{1}{2}\right)-A\left(\dfrac{1}{2}\right)=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\right)\)

\(\Rightarrow A\left(\dfrac{1}{2}\right)=1-\dfrac{1}{2^{100}}\)

Vậy khi x = \(\dfrac{1}{2}\) thì \(A=1-\dfrac{1}{2^{100}}\)

17 tháng 12 2016

lop 7 lam gi co nghiem voi da thuc ha ban

18 tháng 12 2016

Đề thi HSG lớp 7 đó bạn

13 tháng 3 2017

a ) \(A\left(-1\right)=-1+\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4+....+\left(-1\right)^{99}+\left(-1\right)^{100}\)

\(=-1+1-1+1-1+1-....-1+1\)

\(=\left(-1+1\right)+\left(-1+1\right)+.....+\left(-1+1\right)\)

\(=0\)

Hay \(x=-1\) là nguyện của A(x) (đpcm )

b ) \(A\left(\frac{1}{2}\right)=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+....+\left(\frac{1}{2}\right)^{100}\)

\(=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{100}}\)

\(2A\left(\frac{1}{2}\right)=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{99}}\)

\(\Rightarrow2A\left(\frac{1}{2}\right)-A\left(\frac{1}{2}\right)=1-\frac{1}{2^{100}}\)

\(\Rightarrow A\left(\frac{1}{2}\right)=\frac{2^{100}-1}{2^{100}}\)

13 tháng 3 2017

Tại \(x=\frac{1}{2}\) thì A(x) = \(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.......+\left(\frac{1}{2}\right)^{100}\)

=> 2A(x) = \(1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.......+\left(\frac{1}{2}\right)^{99}\)

=> 2A(x) - A(x) =\(1-\left(\frac{1}{2}\right)^{100}\) 

=> A(x) = \(1-\left(\frac{1}{2}\right)^{100}\)

4 tháng 4 2018

Mọi người giúp mik nha  ^_^

19 tháng 2 2020

Ta có: \(P\left(x\right)+Q\left(x\right)=2\left(1+x^2+x^4+...+x^{2010}\right)\)

\(\Rightarrow P\left(\frac{1}{2}\right)+Q\left(\frac{1}{2}\right)=2\left(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{2010}}\right)\)

Đặt \(K=\left(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{2010}}\right)\)

\(\Rightarrow\frac{1}{2^2}K=\left(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{2012}}\right)\)

\(\Rightarrow K-\frac{1}{2^2}K=1-\frac{1}{2^{2012}}\)

\(\Rightarrow\frac{3}{4}K=1-\frac{1}{2^{2012}}\)

\(\Rightarrow K=\frac{4}{3}-\frac{1}{3.2^{2010}}\)

Lúc đó \(P\left(\frac{1}{2}\right)+Q\left(\frac{1}{2}\right)=2\left(\frac{4}{3}-\frac{1}{3.2^{2010}}\right)=\frac{8}{3}-\frac{1}{3.2^{2009}}\)

\(=\frac{2^{2012}-1}{3.2^{2009}}\)

Ta thấy \(2^{2012}-1=2^{4.503}-1=\overline{...6}-1=\overline{...5}⋮5\)

Mà 3 . 22009 không chia hết cho 5 nên khi ta rút gọn \(\frac{2^{2012}-1}{3.2^{2009}}\)đến dạng tối giản thì a vẫn chia hết cho 5.

Vậy \(a⋮5\left(đpcm\right)\)

8 tháng 3 2017

4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)

mà 3^6/9-81=0  => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

24 tháng 5 2016

Thay \(x=\frac{1}{2}\) vào đa thức B(x) ta có :

     \(B\left(\frac{1}{2}\right)=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+.....+\left(\frac{1}{2}\right)^{100}\)

\(\Leftrightarrow2B\left(\frac{1}{2}\right)=2\left(1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+.....+\left(\frac{1}{2}\right)^{100}\right)\)

\(\Leftrightarrow2B\left(\frac{1}{2}\right)=2+1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+......+\left(\frac{1}{2}\right)^{99}\)

Ta có :

 \(2B\left(\frac{1}{2}\right)-B\left(\frac{1}{2}\right)=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{100}}\right)\)

 \(\Leftrightarrow B\left(\frac{1}{2}\right)=2-\frac{1}{2^{100}}\)

Vậy tại \(x=\frac{1}{2}\) thì đa thức \(B\left(x\right)\) có giá trị là \(2-\frac{1}{2^{100}}\)

6 tháng 6 2020

1) A(x) = 3.1/3^2 - 4.1/3 + 1 = 1/3 - 4/3 + 1 = -1 + 1 = 0

⇒ x= 1/3 có là nghiệm A(x)

2)

a) f(x) = 3/2x - 1 ⇒ 3/2x - 1 = 0

3/2x = 1

x = 1:3/2

x= 2/3

Vậy x = 2/3 là nghiệm f(x)

b) g(x) = x^2 - 3x ⇒ x^2 - 3x = 0

⇒ x(x-3) = 0

⇒ x=0 hoặc x-3=0

⇒ x=0 hoặc x= 3

Vậy x=0 hoặc x=3 là nghiệm g(x)

6 tháng 6 2020

1)Thay \(x=\frac{1}{3}\) vào \(A\left(x\right)\), có:

\(A\left(\frac{1}{3}\right)=3\frac{1}{3}^2-4\frac{1}{3}+1=0\)

Vậy...

2)

a) Xét \(f\left(x\right)=0\), có:

\(\Leftrightarrow\frac{3}{2}x-1=0\\ \Leftrightarrow x=\frac{2}{3}\)

Vậy...

b) Xét \(g\left(x\right)=0\), có:

\(\Leftrightarrow x^2-3x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy..