Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(A\left(-1\right)=-1+\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4+....+\left(-1\right)^{99}+\left(-1\right)^{100}\)
\(=-1+1-1+1-1+1-....-1+1\)
\(=\left(-1+1\right)+\left(-1+1\right)+.....+\left(-1+1\right)\)
\(=0\)
Hay \(x=-1\) là nguyện của A(x) (đpcm )
b ) \(A\left(\frac{1}{2}\right)=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+....+\left(\frac{1}{2}\right)^{100}\)
\(=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{100}}\)
\(2A\left(\frac{1}{2}\right)=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{99}}\)
\(\Rightarrow2A\left(\frac{1}{2}\right)-A\left(\frac{1}{2}\right)=1-\frac{1}{2^{100}}\)
\(\Rightarrow A\left(\frac{1}{2}\right)=\frac{2^{100}-1}{2^{100}}\)
Tại \(x=\frac{1}{2}\) thì A(x) = \(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.......+\left(\frac{1}{2}\right)^{100}\)
=> 2A(x) = \(1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.......+\left(\frac{1}{2}\right)^{99}\)
=> 2A(x) - A(x) =\(1-\left(\frac{1}{2}\right)^{100}\)
=> A(x) = \(1-\left(\frac{1}{2}\right)^{100}\)
Ta có: \(P\left(x\right)+Q\left(x\right)=2\left(1+x^2+x^4+...+x^{2010}\right)\)
\(\Rightarrow P\left(\frac{1}{2}\right)+Q\left(\frac{1}{2}\right)=2\left(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{2010}}\right)\)
Đặt \(K=\left(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{2010}}\right)\)
\(\Rightarrow\frac{1}{2^2}K=\left(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{2012}}\right)\)
\(\Rightarrow K-\frac{1}{2^2}K=1-\frac{1}{2^{2012}}\)
\(\Rightarrow\frac{3}{4}K=1-\frac{1}{2^{2012}}\)
\(\Rightarrow K=\frac{4}{3}-\frac{1}{3.2^{2010}}\)
Lúc đó \(P\left(\frac{1}{2}\right)+Q\left(\frac{1}{2}\right)=2\left(\frac{4}{3}-\frac{1}{3.2^{2010}}\right)=\frac{8}{3}-\frac{1}{3.2^{2009}}\)
\(=\frac{2^{2012}-1}{3.2^{2009}}\)
Ta thấy \(2^{2012}-1=2^{4.503}-1=\overline{...6}-1=\overline{...5}⋮5\)
Mà 3 . 22009 không chia hết cho 5 nên khi ta rút gọn \(\frac{2^{2012}-1}{3.2^{2009}}\)đến dạng tối giản thì a vẫn chia hết cho 5.
Vậy \(a⋮5\left(đpcm\right)\)
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Thay \(x=\frac{1}{2}\) vào đa thức B(x) ta có :
\(B\left(\frac{1}{2}\right)=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+.....+\left(\frac{1}{2}\right)^{100}\)
\(\Leftrightarrow2B\left(\frac{1}{2}\right)=2\left(1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+.....+\left(\frac{1}{2}\right)^{100}\right)\)
\(\Leftrightarrow2B\left(\frac{1}{2}\right)=2+1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+......+\left(\frac{1}{2}\right)^{99}\)
Ta có :
\(2B\left(\frac{1}{2}\right)-B\left(\frac{1}{2}\right)=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow B\left(\frac{1}{2}\right)=2-\frac{1}{2^{100}}\)
Vậy tại \(x=\frac{1}{2}\) thì đa thức \(B\left(x\right)\) có giá trị là \(2-\frac{1}{2^{100}}\)
1) A(x) = 3.1/3^2 - 4.1/3 + 1 = 1/3 - 4/3 + 1 = -1 + 1 = 0
⇒ x= 1/3 có là nghiệm A(x)
2)
a) f(x) = 3/2x - 1 ⇒ 3/2x - 1 = 0
3/2x = 1
x = 1:3/2
x= 2/3
Vậy x = 2/3 là nghiệm f(x)
b) g(x) = x^2 - 3x ⇒ x^2 - 3x = 0
⇒ x(x-3) = 0
⇒ x=0 hoặc x-3=0
⇒ x=0 hoặc x= 3
Vậy x=0 hoặc x=3 là nghiệm g(x)
1)Thay \(x=\frac{1}{3}\) vào \(A\left(x\right)\), có:
\(A\left(\frac{1}{3}\right)=3\frac{1}{3}^2-4\frac{1}{3}+1=0\)
Vậy...
2)
a) Xét \(f\left(x\right)=0\), có:
\(\Leftrightarrow\frac{3}{2}x-1=0\\ \Leftrightarrow x=\frac{2}{3}\)
Vậy...
b) Xét \(g\left(x\right)=0\), có:
\(\Leftrightarrow x^2-3x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy..
a) Ta có: \(A\left(x\right)=x+x^2+...+x^{100}\)
\(\Rightarrow A\left(-1\right)=\left(-1\right)+\left(-1\right)^2+...+\left(-1\right)^{99}+\left(-1\right)^{100}\)
\(=\left(-1\right)+1+...+\left(-1\right)+1\) ( 100 số )
\(=0\)
Vậy x = -1 là nghiệm của đa thức A(x)
b) \(A\left(x\right)=x+x^2+...+x^{100}\)
\(\Rightarrow A\left(\dfrac{1}{2}\right)=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{100}\)
\(=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\)
\(\Rightarrow2A\left(\dfrac{1}{2}\right)=1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\)
\(\Rightarrow2A\left(\dfrac{1}{2}\right)-A\left(\dfrac{1}{2}\right)=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\right)\)
\(\Rightarrow A\left(\dfrac{1}{2}\right)=1-\dfrac{1}{2^{100}}\)
Vậy khi x = \(\dfrac{1}{2}\) thì \(A=1-\dfrac{1}{2^{100}}\)