\(2x^4-x^3+x-3+5x^5\)

g(x) =

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2018

f(x) +g(x) + h(x)

=(2x4 - x3 + x - 3 + 5x5) + (-x5 + 5x2 +4x + 2 + 3x5) + (x2 + x + 1 + 2x3 + 3x4)

= 2x4 - x3 + x - 3 + 5x5 +(-x5) + 5x2 +4x + 2 + 3x5 + x2 + x + 1 + 2x3 + 3x4

= 7x5 + 5x4 + x3 +x2 + 6x

f(x) - g(x) - h(x)

=(2x4 - x3 + x - 3 + 5x5) - (-x5 + 5x2 +4x + 2 + 3x5) - (x2 + x + 1 + 2x3 + 3x4)

=2x4 - x3 + x - 3 + 5x5 +x5 - 5x2 -4x - 2 -3x5 - x2 - x - 1 - 2x3 - 3x4

= 3x5 - x4 - 3x3 - 6x2 - 4x - 6

9 tháng 1 2020

\(P\left(x\right)+Q\left(x\right)=f\left(x\right)-g\left(x\right)\)

\(f\left(x\right)-g\left(x\right)=3x^4+3x^3-5x^2+x-5-x^4-3x^3+3x^2-5x+7\)

\(=2x^4-2x^2-4x+2\)

\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4-2x^2-4x+2\left(1\right)\)

\(P\left(x\right)-Q\left(x\right)=g\left(x\right)+h\left(x\right)\)

\(g\left(x\right)+h\left(x\right)=x^4+3x^3-3x^2+5x-7+5x^4+2x^3+x^2-5\)

\(=6x^4+5x^3-2x^2+5x-12\)

\(\Rightarrow P\left(x\right)-Q\left(x\right)=6x^4+5x^3-2x^2+5x-12\left(2\right)\)

Từ ( 1 );( 2 ) thì tìm dc P(x) và Q(x)

a: \(f\left(x\right)+g\left(x\right)-h\left(x\right)\)

\(=5x^5-4x^4+3x^3-x^2-3x+4+x^5-2x^4+x^3-x+7\)

\(=6x^5-6x^4+4x^3-x^2-4x+11\)

f(x)-g(x)-h(x)

\(=15x^5-12x^4+9x^3-7x^2+7x+x^5-2x^4+x^3-x+7\)

\(=16x^5-14x^4+10x^3-7x^2+6x+7\)

b: f(x)+2g(x)=0

\(\Leftrightarrow10x^5-8x^4+6x^3-4x^2+2x+2-10x^5+8x^4-6x^3+6x^2-10x+4=0\)

\(\Leftrightarrow2x^2-8x+6=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

=>x=1 hoặc x=3

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

16 tháng 4 2017

ai giúp mk với nè , tối học rồi

29 tháng 3 2019

a. f(x)+g(x)=2x5−4x4+3x3−x2+5x−1+(−x5+2x4−3x3−x2−2x+7)

=2x5-x5-4x4+2x4+3x3-3x3-x2-x2+5x-2x-1+7

=x5-2x4-2x2+3x+6

b. f(x)+h(x)=2x5−4x4+3x3−x2+5x−1+x5−2x4−2x2−x−3

=2x5+x5-4x4-2x4+3x3-x2-2x2+5x-x-1-3

=3x5-6x4+3x3-3x2+6x-4

c. g(x)+h(x)=−x5+2x4−3x3−x2−2x+7+x5−2x4−2x2−x−3

=-x5+x5+2x4-2x4-3x3-x2-2x2-2x-x+7-3

=-3x3-3x2-3x+4

d. f(x)-g(x)=2x5−4x4+3x3−x2+5x−1-(−x5+2x4−3x3−x2−2x+7)

=2x5−4x4+3x3−x2+5x−1-x5-2x4+3x3+x2+2x-7

=2x5-x5-4x4-2x4+3x3+3x3-x2+x2+5x+2x-1-7

=x5-6x4+6x3+7x-8

e. f(x)-h(x)=2x5−4x4+3x3−x2+5x−1-(x5−2x4−2x2−x−3)

=2x5−4x4+3x3−x2+5x−1-x5+2x4+2x2+x+3

=2x5-x5-4x4+2x4+3x3-x2+2x2+5x+x-1+3

=x5-2x4+3x3+x2+6x-4

h. g(x)-h(x)=−x5+2x4−3x3−x2−2x+7-(x5−2x4−2x2−x−3)

=−x5+2x4−3x3−x2−2x+7-x5+2x4+2x2+x+3

=-x5-x5+2x4+2x4-3x3-x2+2x2-2x+x+7+3

=-2x5+4x4-3x3+x2-x+10

f. f(x)+g(x)+h(x)=2x5−4x4+3x3−x2+5x−1+(−x5+2x4−3x3−x2−2x+7)+x5−2x4−2x2−x−3

=2x5-x5+x5-4x4+2x4-2x4+3x3-3x3-x2-x2-2x2+5x-2x-x-1+7-3

=2x5-4x4-4x2+2x+3

g. f(x)+g(x)-h(x)=2x5−4x4+3x3−x2+5x−1+(−x5+2x4−3x3−x2−2x+7)-(x5−2x4−2x2−x−3)

=2x5−4x4+3x3−x2+5x−1+(−x5+2x4−3x3−x2−2x+7)-x5+2x4+2x2+x+3

=2x5-x5-x5-4x4+2x4+2x4+3x3-3x3-x2-x2+2x2+5x-2x+x-1+7+3

=4x+9

n. f(x)-g(x)+h(x)=2x5−4x4+3x3−x2+5x−1-(−x5+2x4−3x3−x2−2x+7)+x5−2x4−2x2−x−3

=2x5−4x4+3x3−x2+5x−1-x5-2x4+3x3+x2+2x-7+x5−2x4−2x2−x−3

=2x5-x5+x5-4x4-2x4-2x4+3x3+3x3-x2+x2-2x2+5x+2x-x-1-7-3

=2x5-8x4+6x3-2x2+6x-11

m. f(x)-g(x)-h(x)=2x5−4x4+3x3−x2+5x−1-(−x5+2x4−3x3−x2−2x+7)-(x5−2x4−2x2−x−3)

=2x5−4x4+3x3−x2+5x−1-x5-2x4+3x3+x2+2x-7-x5+2x4+2x2+x+3

=2x5-x5-x5-4x4-2x4+2x4+3x3+3x3-x2+x2+2x2+5x+2x+x-1-7+3

=-4x4+6x3+2x2+8x-5

16 tháng 5 2017

f(x) + g(x) - h(x) = (x5 - 4x3 + x2 - 2x + 1) + (x5 - 2x4 + x2 - 5x + 3) - (x4 - 3x2 + 2x - 5)

= x5 - 4x3 + x2 - 2x + 1 + x5 - 2x4 + x2 - 5x + 3 - x4 + 3x2 - 2x + 5

= (x5 + x5) - (2x4 + x4) - 4x3 + ( x2 + x2 + 3x2) - (2x + 5x + 2x) + (1 + 3 + 5)

= 2x5 - 3x4 - 4x3 + 5x2 - 9x + 9

f(x)=

23 tháng 8 2018

f(x) + g(x) - h(x) = (x5 - 4x3 + x2 - 2x + 1) + (x5 - 2x4 + x2 - 5x + 3) - (x4 - 3x2 + 2x - 5)

= x5 - 4x3 + x2 - 2x + 1 + x5 - 2x4 + x2 - 5x + 3 - x4 + 3x2 - 2x + 5

= (x5 + x5) - (2x4 + x4) - 4x3 + ( x2 + x2 + 3x2) - (2x + 5x + 2x) + (1 + 3 + 5)

= 2x5 - 3x4 - 4x3 + 5x2 - 9x + 9