\(x^2+2x\). Tính giá trị của biểu thức

\(S=...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 1 2024

\(\dfrac{1}{R\left(x\right)}=\dfrac{1}{x\left(x+2\right)}=\dfrac{1}{2}\left(\dfrac{1}{x}-\dfrac{1}{x+2}\right)\)

\(\Rightarrow S=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2022}-\dfrac{1}{2024}+\dfrac{1}{2023}-\dfrac{1}{2025}\right)+\dfrac{1}{2.2023}\)

\(=\dfrac{1}{2}\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{2024}-\dfrac{1}{2025}\right)+\dfrac{1}{2.2023}\)

Một kết quả rất xấu

1: \(A=\dfrac{15-4+1}{10}+\dfrac{18-8+1}{12}\)

\(=\dfrac{12}{10}+\dfrac{11}{12}\)

\(=\dfrac{6}{5}+\dfrac{11}{12}=\dfrac{72+55}{60}=\dfrac{127}{60}\)

3 tháng 3 2017

Ta có: \(\left|2x-1\right|-x=4\)

\(\Rightarrow\left|2x-1\right|=4+x\)

+) TH1: \(2x-1\ge0\Rightarrow2x\ge1\Rightarrow x\ge\dfrac{1}{2}\)

Ta có: \(2x-1=4+x\)

\(\Rightarrow2x-x=1+4\)

\(\Rightarrow x=5\) (t/m)

+) TH2: \(2x-1< 0\Rightarrow2x< 1\Rightarrow x< \dfrac{1}{2}\)

Khi đó \(-2x+1=4+x\)

\(\Rightarrow-2x-x=-1+4\)

\(\Rightarrow-3x=3\)

\(\Rightarrow x=-1\) (t/m)

Vậy \(\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\).

16 tháng 10 2017

\(\dfrac{\left(\dfrac{-1}{2}\right)^3-\left(\dfrac{3}{4}\right)^3.\left(-2\right)^2}{2.\left(-1\right)^5+\left(\dfrac{3}{4}\right)^2-\dfrac{3}{8}}\)

\(=\dfrac{\dfrac{-1}{8}-\dfrac{27}{64}.4}{-2+\dfrac{9}{16}-\dfrac{3}{8}}=\dfrac{-\dfrac{1}{8}-\dfrac{27}{16}}{-\dfrac{29}{16}}\)

\(=\dfrac{-\dfrac{29}{16}}{-\dfrac{29}{16}}=1\)

Chúc bạn học tốt!!!

5 tháng 8 2018

Ta có:

\(B=\dfrac{\left(\dfrac{2}{3}\right)^3.\left(-\dfrac{3}{4}\right)^2.\left(-1\right)^5}{\left(\dfrac{2}{5}\right)^2.\left(-\dfrac{5}{12}\right)^3}=\dfrac{\dfrac{8}{27}.\dfrac{9}{16}.\left(-1\right)}{\dfrac{4}{25}.\left(-\dfrac{125}{1728}\right)}\\ =\dfrac{-\dfrac{1}{6}}{-\dfrac{5}{432}}=\dfrac{72}{5}\)

Vậy B = \(\dfrac{72}{5}\)

8 tháng 11 2018

1) Vì \(\left|x-2018\right|\) \(\ge\) \(\forall\) x \(\in\) Z
=> \(\left|x-2018\right|+2019\) \(\ge\) 2019
Vậy để biểu thức đạt GTNN \(\Leftrightarrow\)\(\left|x-2018\right|\) = 0
=> x - 2018 = 0
=> x = 0 + 2018
=> x = 2018
Thay x vào biểu thức, ta có:
\(\left|2018-2018\right|\) + 2019
= 0 + 2019
= 2019

18 tháng 11 2022

R=|2x-4|+|2x+5|+1

=|4-2x|+|2x+5|+1

=>R>=|4-2x+2x+5|+1=10

Dấu = xảy ra khi (2x-4)(2x+5)<=0

=>-5/2<=x<=2

c: Q=|x+1/3|+|2/3-x|>=|x+1/3+2/3-x|=1

Dấu = xảy ra khi (x+1/3)(x-2/3)<=0

=>-1/3<=x<=2/3

3 tháng 8 2017

trả lời nhanh nha!!!

9 tháng 8 2017

Hồng Phúc Nguyễn bn hk cx giỏi nhỉ bn giúp mk bài này nha

xin bn đấy!!!bucminh

18 tháng 7 2017

\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\dfrac{2^{10}.3^8-2.3^9.2^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)

\(=\dfrac{2^{10}.\left(3^8-3^9\right)}{2^{10}.3^8.\left(1+5\right)}=\dfrac{3^8-3^9}{3^8.6}=\dfrac{3^8.\left(1-3\right)}{3^8.6}=\dfrac{-2}{6}=-\dfrac{1}{3}\)

~ Học tốt ~

18 tháng 7 2017

Bài 1:

1) \(3^2.\dfrac{1}{243}.81^2.\dfrac{1}{3^3}\)

\(=3^2.\left(\dfrac{1}{3}\right)^5.\left(3^4\right)^2.\dfrac{1}{3^3}\)

\(=3^2.\dfrac{1}{3^5}.3^8.\dfrac{1}{3^3}\)

\(=3^2=9\)

2) \(\left(4.2^5\right):\left(2^3.\dfrac{1}{16}\right)\)

\(=\left(2^2.2^5\right):[2^3.\left(\dfrac{1}{2}\right)^4]\)

\(=2^7:2^3:\dfrac{1}{2^4}\)

\(=2^4.2^4=256\)

3)\(\left(2^{-1}+3^{-1}\right)+\left(2^{-1}.2^0\right):2^3\)

\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2}.1:2^3\)

\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2^4}\)

\(=\dfrac{43}{48}\)

4)\(\left(-\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)

\(=-3-1+\dfrac{1}{4}.\dfrac{1}{2}\)

\(=-3-1+\dfrac{1}{8}\)

\(=-4+\dfrac{1}{8}\\ \)

\(=-\dfrac{31}{8}\)

5)\([\left(0,1\right)^2]^0+[\left(\dfrac{1}{7}\right)^{-1}]^2.\dfrac{1}{49}.[\left(2^2\right)^3:2^5]\\ =1+7^2.\dfrac{1}{7^2}.2^6:2^5\\ =1+1.2\\ =3\)

Chúc bạn học tốt haha

19 tháng 4 2017

Ta có: P(x) = x4 - 3x2 + 1212 – x.

a) Vì P(x) + Q(x) = x5 – 2x2 + 1 nên

Q(x) = x5 – 2x2 + 1 - P(x)

Q(x) = x5 – 2x2 + 1 - x4 + 3x2 - 1212 + x

Q(x) = x5 - x4 + x2 + x + 1212

b) Vì P(x) - R(x) = x3 nên

R(x) = x4 - 3x2 + 1212 – x - x3

hay R(x) = x4 - x3 - 3x2 – x + 1212.