Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : H(x)+Q(x)=P(x)H(x)+Q(x)=P(x)
<=>H(x)=P(x)−Q(x)<=>H(x)=P(x)−Q(x)
<=>H(x)=(4x3−32x2−x+10)−(10−12x−2x2+4x3)<=>H(x)=(4x3−32x2−x+10)−(10−12x−2x2+4x3)
<=>H(x)=(4x3−4x3)+(−32x2+2x2)+(−x+12x)+(10−10)<=>H(x)=(4x3−4x3)+(−32x2+2x2)+(−x+12x)+(10−10)
<=>H(x)=12x2−12x=(12x)(x−1)
HT
1.a,Q=x+32x+1−x−72x+1=x+32x+1+7−x2x+11.a,Q=x+32x+1−x−72x+1=x+32x+1+7−x2x+1
=x+3+7−x2x+1=102x+1=x+3+7−x2x+1=102x+1
b,b, Vì x∈Z⇒(2x+1)∈Zx∈ℤ⇒(2x+1)∈ℤ
Q nhận giá trị nguyên ⇔102x+1⇔102x+1 nhận giá trị nguyên
⇔10⋮2x+1⇔10⋮2x+1
⇔2x+1∈Ư(10)={±1;±2;±5;±10}⇔2x+1∈Ư(10)={±1;±2;±5;±10}
Mà (2x+1):2(2x+1):2 dư 1 nên 2x+1=±1;±52x+1=±1;±5
⇒x=−1;0;−3;2⇒x=−1;0;−3;2
Vậy.......................
HT
a) Ta có: \(Q\left(x\right)=x\cdot\left(\frac{x^2}{2}-\frac{1}{2}+\frac{1}{2}x\right)-\left(\frac{x}{3}-\frac{1}{2}x^4+x^2-\frac{x}{3}\right)\)
\(=\frac{x^3}{2}-\frac{x}{2}+\frac{1}{2}x^2-\frac{x}{3}+\frac{1}{2}x^4-x^2+\frac{x}{3}\)
\(=\frac{1}{2}x^4+\frac{1}{2}x^3-\frac{1}{2}x^2-\frac{1}{2}x\)
b) Thay \(x=-\frac{1}{2}\) vào biểu thức \(Q\left(x\right)=\frac{1}{2}x^4+\frac{1}{2}x^3-\frac{1}{2}x^2-\frac{1}{2}x\), ta được:
\(Q\left(-\frac{1}{2}\right)=\frac{1}{2}\cdot\left(-\frac{1}{2}\right)^4+\frac{1}{2}\cdot\left(-\frac{1}{2}\right)^3-\frac{1}{2}\cdot\left(-\frac{1}{2}\right)^2-\frac{1}{2}\cdot\frac{-1}{2}\)
\(=\frac{1}{2}\cdot\frac{1}{16}-\frac{1}{2}\cdot\frac{1}{8}-\frac{1}{2}\cdot\frac{1}{4}+\frac{1}{4}\)
\(=\frac{1}{32}-\frac{1}{16}-\frac{1}{8}+\frac{1}{4}\)
\(=\frac{3}{32}\)
Vậy: \(Q\left(-\frac{1}{2}\right)=\frac{3}{32}\)
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
Bài 2:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)
Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)
\(\Rightarrow4x+12=6x\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
Vậy x = 6
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)
\(=\frac{14-5}{8}=\frac{9}{8}\)
+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)
+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)
+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)
Vậy ...
c) \(5^x+5^{x+1}+5^{x+2}=3875\)
\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)
\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)
\(\Rightarrow5^x.31=3875\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
Vậy x = 3