Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow x=y=z\)
Khi đó : \(3x^{2018}=27^{673}=\left(3^3\right)^{673}=3^{2019}\)
\(\Leftrightarrow x^{2018}=3^{2018}\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=z=3\\x=y=z=-3\end{cases}}\)
Đến đây tự tính A nha!
Có :
\(3k^2+3k+1=\left(k-1\right)^3-k^3\)
\(\Rightarrow x_k=\frac{3k^2+3k+1}{k^3\left(k+1\right)^3}=\frac{\left(k-1\right)^3-k^3}{k^3\left(k+1\right)^3}=\frac{1}{k^3}-\frac{1}{\left(k+1\right)^3}\)
Áp dụng , ta được :
\(P=\frac{1}{1^3}-\frac{1}{2^3}+\frac{1}{2^3}-\frac{1}{3^3}+\frac{1}{3^3}-\frac{1}{4^3}...+\frac{1}{2018^3}-\frac{1}{2019^3}=1-\frac{1}{2009^3}\)
Đặt
\(Q\left(x\right)=P\left(x\right)+R\left(x\right)\)
Sao cho bậc của R(x) phải nhỏ hơn bậc của P(x), và Q(x) có nghiệm là 1;2;....;2016
Từ đó ta có
\(Q\left(x\right)=P\left(x\right)+a_0x^{2015}+a_1x^{2014}+...+a_{2014}x+a_{2015}\)
Ta tìm các giá trị \(a_0,a_1,...,a_{2015}\)sao cho \(Q\left(1\right)=Q\left(2\right)=...=Q\left(2016\right)=0\). Hay
\(a_0+a_1+...+a_{2015}+1=0\)
\(2^{2016}a_0+2^{2015}a_1+...+a_{2015}+2^2=0\)
................................................................................
\(2016^{2016}a_0+2016^{2015}a_1+...+a_{2015}+2016^2=0\)
\(\Rightarrow a_0=a_1=...=a_{2012}=a_{2014}=a_{2015}=0\)và \(a_{2013}=-1\)
\(\Rightarrow R\left(x\right)=-x^2\)
\(\Rightarrow Q\left(x\right)=P\left(x\right)-x^2\)
Vì \(1;2;3;...;2016\)là nghiệm của Q(x), mà bậc của Q(x) là 2016 và có hệ số \(x^{2016}\)bằng 1 nên
\(Q\left(x\right)=P\left(x\right)-x^2=\left(x-1\right)\left(x-2\right)...\left(x-2016\right)\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)...\left(x-2016\right)+x^2\)
\(\Rightarrow P\left(2017\right)=\left(2017-1\right)\left(2017-2\right)...\left(2017-2016\right)+2017^2\)
Tự bấm máy tính đi nhé
Bài này nhé bài kia nhầm 1 chỗ
Đặt
\(Q\left(x\right)=P\left(x\right)+R\left(x\right)\)
Sao cho bậc của R(x) phải nhỏ hơn bậc của P(x), và Q(x) có nghiệm là 1;2;....;2016
Từ đó ta có
\(Q\left(x\right)=P\left(x\right)+a_0x^{2015}+a_1x^{2014}+...+a_{2014}x+a_{2015}\)
Ta tìm các giá trị \(a_0,a_1,...,a_{2015}\)sao cho \(Q\left(1\right)=Q\left(2\right)=...=Q\left(2016\right)=0\). Hay
\(a_0+a_1+...+a_{2015}+1=0\)
\(2^{2016}a_0+2^{2015}a_1+...+a_{2015}+2^2=0\)
................................................................................
\(2016^{2016}a_0+2016^{2015}a_1+...+a_{2015}+2016^2=0\)
\(\Rightarrow a_0=a_1=...=a_{2012}=a_{2013}=a_{2015}=0\)và \(a_{2014}=-1\)
\(\Rightarrow R\left(x\right)=-x^2\)
\(\Rightarrow Q\left(x\right)=P\left(x\right)-x^2\)
Vì \(1;2;3;...;2016\)là nghiệm của Q(x), mà bậc của Q(x) là 2016 và có hệ số \(x^{2016}\)bằng 1 nên
\(Q\left(x\right)=P\left(x\right)-x^2=\left(x-1\right)\left(x-2\right)...\left(x-2016\right)\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)...\left(x-2016\right)+x^2\)
\(\Rightarrow P\left(2017\right)=\left(2017-1\right)\left(2017-2\right)...\left(2017-2016\right)+2017^2\)
Tự bấm máy tính đi nhé
Từ \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)
Suy ra: x=y=z
\(\Rightarrow3x^{2018}=3y^{2018}=3z^{2018}=27^{673}=3^{2019}\)
\(\Leftrightarrow x^{2018}=y^{2018}=z^{2018}=3^{2018}\)
\(\Rightarrow x,y,z=3\)
Dễ tính A
mk ko vt lại đề
=> (4x^2+8xy+4y^2)+(x^2-2x+1)+(y^2+2y+1)=0
=>(2x+2y)^2+(x-1)^2+(y+1)^2=0
...... phần này bn tự làm đc
=>x=1,y=-1
thay vào là dc
Ta có : \(5x^2+5y^2+8xy-2x+2y+2=0\)
=> \(\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=0\)
=> \(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Ta có \(\left(2x+2y\right)^2\ge0\forall x,y\) , \(\left(x-1\right)^2\ge0\forall x\) , \(\left(y+1\right)^2\ge0\forall x\)
=> \(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\forall x,y\)
=> \(\hept{\begin{cases}x+y=0\\x-1=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}}\)
Thay vào M ta có:
\(M=0^{2016}+\left(1-2\right)^{2018}+\left(-1+1\right)^{2019}=1\)