\(P\left(k\right)=\frac{k}{k+1}\) với mọi
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

Ta có : \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow x=y=z\)

Khi đó : \(3x^{2018}=27^{673}=\left(3^3\right)^{673}=3^{2019}\)

\(\Leftrightarrow x^{2018}=3^{2018}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=z=3\\x=y=z=-3\end{cases}}\)

Đến đây tự tính A nha!

30 tháng 4 2019

Tag hộ tth vào phát :) 

Mọi người vào topic thảo luận bài với ạ 

4 tháng 7 2017

Có :

\(3k^2+3k+1=\left(k-1\right)^3-k^3\)

\(\Rightarrow x_k=\frac{3k^2+3k+1}{k^3\left(k+1\right)^3}=\frac{\left(k-1\right)^3-k^3}{k^3\left(k+1\right)^3}=\frac{1}{k^3}-\frac{1}{\left(k+1\right)^3}\)

Áp dụng , ta được :

\(P=\frac{1}{1^3}-\frac{1}{2^3}+\frac{1}{2^3}-\frac{1}{3^3}+\frac{1}{3^3}-\frac{1}{4^3}...+\frac{1}{2018^3}-\frac{1}{2019^3}=1-\frac{1}{2009^3}\)

23 tháng 12 2016

Đặt 

\(Q\left(x\right)=P\left(x\right)+R\left(x\right)\)

Sao cho bậc của R(x) phải nhỏ hơn bậc của P(x), và Q(x) có nghiệm là 1;2;....;2016

Từ đó ta có

\(Q\left(x\right)=P\left(x\right)+a_0x^{2015}+a_1x^{2014}+...+a_{2014}x+a_{2015}\)

Ta tìm các giá trị \(a_0,a_1,...,a_{2015}\)sao cho \(Q\left(1\right)=Q\left(2\right)=...=Q\left(2016\right)=0\). Hay

\(a_0+a_1+...+a_{2015}+1=0\)

\(2^{2016}a_0+2^{2015}a_1+...+a_{2015}+2^2=0\)

................................................................................

\(2016^{2016}a_0+2016^{2015}a_1+...+a_{2015}+2016^2=0\)

\(\Rightarrow a_0=a_1=...=a_{2012}=a_{2014}=a_{2015}=0\)và \(a_{2013}=-1\)

\(\Rightarrow R\left(x\right)=-x^2\)

\(\Rightarrow Q\left(x\right)=P\left(x\right)-x^2\)

Vì \(1;2;3;...;2016\)là nghiệm của Q(x), mà bậc của Q(x) là 2016 và có hệ số \(x^{2016}\)bằng 1 nên

\(Q\left(x\right)=P\left(x\right)-x^2=\left(x-1\right)\left(x-2\right)...\left(x-2016\right)\)

\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)...\left(x-2016\right)+x^2\)

\(\Rightarrow P\left(2017\right)=\left(2017-1\right)\left(2017-2\right)...\left(2017-2016\right)+2017^2\)

Tự bấm máy tính đi nhé

Bài này nhé bài kia nhầm 1 chỗ

23 tháng 12 2016

Đặt 

\(Q\left(x\right)=P\left(x\right)+R\left(x\right)\)

Sao cho bậc của R(x) phải nhỏ hơn bậc của P(x), và Q(x) có nghiệm là 1;2;....;2016

Từ đó ta có

\(Q\left(x\right)=P\left(x\right)+a_0x^{2015}+a_1x^{2014}+...+a_{2014}x+a_{2015}\)

Ta tìm các giá trị \(a_0,a_1,...,a_{2015}\)sao cho \(Q\left(1\right)=Q\left(2\right)=...=Q\left(2016\right)=0\). Hay

\(a_0+a_1+...+a_{2015}+1=0\)

\(2^{2016}a_0+2^{2015}a_1+...+a_{2015}+2^2=0\)

................................................................................

\(2016^{2016}a_0+2016^{2015}a_1+...+a_{2015}+2016^2=0\)

\(\Rightarrow a_0=a_1=...=a_{2012}=a_{2013}=a_{2015}=0\)và \(a_{2014}=-1\)

\(\Rightarrow R\left(x\right)=-x^2\)

\(\Rightarrow Q\left(x\right)=P\left(x\right)-x^2\)

Vì \(1;2;3;...;2016\)là nghiệm của Q(x), mà bậc của Q(x) là 2016 và có hệ số \(x^{2016}\)bằng 1 nên

\(Q\left(x\right)=P\left(x\right)-x^2=\left(x-1\right)\left(x-2\right)...\left(x-2016\right)\)

\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)...\left(x-2016\right)+x^2\)

\(\Rightarrow P\left(2017\right)=\left(2017-1\right)\left(2017-2\right)...\left(2017-2016\right)+2017^2\)

Tự bấm máy tính đi nhé

17 tháng 7 2019

Từ \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)

Suy ra: x=y=z

\(\Rightarrow3x^{2018}=3y^{2018}=3z^{2018}=27^{673}=3^{2019}\)

\(\Leftrightarrow x^{2018}=y^{2018}=z^{2018}=3^{2018}\)

\(\Rightarrow x,y,z=3\)

Dễ tính A

17 tháng 7 2019

Cảm ơn bạn nhé ,,.... 

21 tháng 12 2019

mk ko vt lại đề 

=> (4x^2+8xy+4y^2)+(x^2-2x+1)+(y^2+2y+1)=0

=>(2x+2y)^2+(x-1)^2+(y+1)^2=0

...... phần này bn tự làm đc

=>x=1,y=-1

thay vào là dc

21 tháng 12 2019

Ta có : \(5x^2+5y^2+8xy-2x+2y+2=0\)

=> \(\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=0\)

=> \(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Ta có \(\left(2x+2y\right)^2\ge0\forall x,y\)   ,   \(\left(x-1\right)^2\ge0\forall x\)   ,   \(\left(y+1\right)^2\ge0\forall x\)

=> \(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\forall x,y\)

=> \(\hept{\begin{cases}x+y=0\\x-1=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}}\)

Thay vào M ta có:

\(M=0^{2016}+\left(1-2\right)^{2018}+\left(-1+1\right)^{2019}=1\)