\(ax^2+bx+c\) thỏa mãn P(x) \(⋮7\forall x\in Z\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

Ta có: \(P\left(x\right)=ax^2+bx+c\)

+) \(P\left(0\right)=a.0^2+b.0+c=c⋮7\)

+) \(P\left(1\right)=a.1^2+b.1+c=a+b+c\)

\(c⋮7\)

=> a+b\(⋮7\)(1)

+) \(P\left(2\right)=a.2^2+b.2+c=4a+2b+c=2\left(2a+b\right)+c\)

mà c chia hết cho 7

=>2(2a+b) chia hết cho 7

=> 2a+b chia hết cho 7 vì (2,7)=1

=> a+(a+b) chia hết cho 7

=> a chia hết cho 7 vì a+b chia hết cho7

=> b chia hết cho 7

vầy a,b,c chia hết cho 7

13 tháng 3 2017

ta có f(x)=ax\(^2\)+bx+c

tại x=0 =>f(0)=c\(⋮\)7(1)

x=1=>f(1)=a+b+c\(⋮\)7

mà c\(⋮\)7=>a+b\(⋮\)7(2)

x=-1=>f(-1)=a-b+c

mà c\(⋮\)7=>a-b\(⋮\)7(3)

từ (2)(3)có a+b+a-b=2a\(⋮\)7

mà 2;7=(1)

=>a\(⋮\)7(4)

từ (4)(3)ta có a-b\(⋮\)7

a\(⋮\)7

=>b\(⋮\)7(5)

từ (1)(4)(5)suy ra a,b,c\(⋮\)7

30 tháng 3 2017

Câu thay từng giá trị của P(0) ; đến P(1) ; ...rồi trừ đi khi nào ra 2a chia hết cho 5 thì thôi

10 tháng 4 2020

Vì  \(P\left(x\right)=ax^2+bx+c\) với mọi x

=> Ta có: 

Với x = 0 => \(P\left(0\right)=c⋮5\)

Với x = 1 => \(P\left(1\right)=a+b+c⋮5\Rightarrow a+b⋮5\)

Với  x = -1 => \(P\left(-1\right)=a-b+c⋮5\Rightarrow a-b⋮5\)

=> ( a + b ) + ( a  - b ) \(⋮\)

=> 2a \(⋮\)

=> a \(⋮\)

=> b \(⋮\)5

25 tháng 3 2017

\(P\left(0\right)=ax^2+bx+c=a.0+b.0+c=c\) 

\(P\left(1\right)=ax^2+bx+c=a.1+b.1+c=a+b+c\)

\(P\left(2\right)=ax^2+bx+c=a.2^2+b.2+c=4a+2b+c\)

Do \(P\left(x\right)⋮3\forall x\in Z\) nên c;a+b+c;4a+2b+c đều chia hết cho 3

=>\(\left(a+b+c\right)-c=a+b⋮3\Rightarrow2\left(a+b\right)=2a+2b⋮3\);\(\left(4a+2b+c\right)-c=4a+2b⋮3\)

=>\(\left(4a+2b\right)-\left(2a+2b\right)=2a⋮3\) mà (2;3)=1 => a chia hết cho 3

a+b+c chia hết cho 3 mà a;c đều chia hết cho 3 => b cũng chia hết cho 3

=>....

a) Ta có: 3a+2b⋮17

⇔8(3a+2b)⋮17

Ta có: 8(3a+2b)+10a+b

=24a+16b+10a+b

=34a+17b

=17(2a+b)⋮17

hay 8(3a+2b)+(10a+b)⋮17

mà 8(3a+2b)⋮17(cmt)

nên 10a+b⋮17(đpcm)

b) Ta có: \(F\left(0\right)=a\cdot0^2+b\cdot0+c=c\)

\(F\left(1\right)=a\cdot1^2+b\cdot1+c=a+b+c\)

\(F\left(-1\right)=a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=a-b+c\)

mà F(x)⋮3

nên F(0)⋮3; F(1)⋮3; F(-1)⋮3

hay c⋮3(đpcm 3); F(1)+F(-1)⋮3; F(1)-F(-1)⋮3

Ta có: F(1)+F(-1)⋮3(cmt)

⇔a+b+c+a-b+c⋮3

hay 2a+2c⋮3

⇔a+c⋮3

mà c⋮3(cmt)

nên a⋮3(đpcm1)

Ta có: F(1)-F(-1)⋮3(cmt)

⇔a+b+c-a+b-c⋮3

hay 2b⋮3

mà 2\(⋮̸\)3

nên b⋮3(đpcm2)

6 tháng 7 2015

   Vi P(x) chia het cho 3 voi moi gia tri cua x thuoc N nen

_ voi x=0 => P(0)=0+0+c=c => c chia het cho 3

_ voi x=1 ta co P(1)=a+b+c chia het cho 3. Ma c chia het cho 3 nebn a+b chia het cho 3 <=> a va b cung chia het cho 3

Vay a,b, c deu chia het cho 3

=> dpcm

24 tháng 1 2016

Nếu a=1 b=2 a+b van chia het cho 3