\(ax^2+bx+c\) có tính chất P(1) , P(4) , P(9) là các số hữu ti...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2019

Ta có:

\(P\left(1\right)=a+b+c\)

\(P\left(4\right)=16a+4b+c\)

\(P\left(9\right)=81a+9b+c\)

Vì P(1); P(4) là số hữu tỉ nên \(P\left(4\right)-P\left(1\right)=15a+3b=3\left(5a+b\right)\)là số hữu tỉ

=> \(5a+b\)là số hữu tỉ (1)

Vì P(1); P(9) là số hữu tỉ nên \(P\left(9\right)-P\left(1\right)=80a+8b=8\left(10a+b\right)\)là số hữu tỉ

=> \(10a+b\)là số hữu tỉ (2)

Từ (1), (2) => \(\left(10a+b\right)-\left(5a+b\right)=10a+b-5a-b=5a\)là số hữu tỉ

=> a là số hữu tỉ

Từ (1)=> b là số hữu tỉ

=> c là số hữu tỉ

25 tháng 1 2017

mình chịu

30 tháng 3 2019

\(f\left(x\right)=ax^2+bx+c\)

Ta có : \(f\left(-2\right)=4a-2b+c\)

          \(f\left(3\right)=9a+3b+c\)

\(\Rightarrow\) \(f\left(-2\right)+f\left(3\right)=4a-2b+c+9a+3b+c\)

                                       \(=13a+b+c\)

                                       \(=0\)

\(\Rightarrow\) \(-f\left(-2\right)=f\left(3\right)\)

\(\Rightarrow\) \(f\left(-2\right).f\left(3\right)=f\left(-2\right).-f\left(-2\right)=-\left[f\left(-4\right)\right]^2\le0\)

\(\Rightarrow\) \(đpcm\)

Study well ! >_<

30 tháng 3 2019

tốt lắm bạn 

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lời giải:
$x$ là số hữu tỉ khác $0$. Đặt $x=\frac{a}{b}$ với $a,b$ là số nguyên, $b\neq 0$.

Giả sử $x+y$ là số hữu tỉ. Đặt $x+y=\frac{c}{d}$ với $c,d\in\mathbb{Z}, d\neq 0$

$\Rightarrow y=\frac{c}{d}-x=\frac{c}{d}-\frac{a}{b}=\frac{bc-ad}{bd}$ là số hữu tỉ (do $bc-ad, bd\in\mathbb{Z}, bd\neq 0$)

Điều này vô lý do $y$ là số vô tỉ.

$\Rightarrow$ điều giả sử là sai. Tức là $x+y$ vô tỉ.

Hoàn toàn tương tự, $x-y$ cũng là số vô tỉ.

-------------------------------

Chứng minh $xy$ vô tỉ.

Giả sử $xy$ hữu tỉ. Đặt $xy=\frac{c}{d}$ với $c,d$ nguyên và $d\neq 0$

$\Rightarrow y=\frac{c}{d}:x=\frac{c}{d}:\frac{a}{b}=\frac{bc}{ad}\in\mathbb{Q}$

Điều này vô lý do $y\not\in Q$

$\Rightarrow$ điều giả sử là sai $\Rightarrow xy$ vô tỉ.

-------------------------------

CM $\frac{x}{y}$ vô tỉ.

Giả sử $\frac{x}{y}$ hữu tỉ. Đặt $\frac{x}{y}=\frac{c}{d}$ với $c,d$ nguyên, $d\neq 0$

$\Rightarrow y=x:\frac{c}{d}=\frac{a}{b}: \frac{c}{d}=\frac{ad}{bc}\in\mathbb{Q}$

Điều này vô lý do $y\not\in Q$

$\Rightarrow$ điều giả sử là sai. Tức là $\frac{x}{y}$ vô tỉ.

29 tháng 6 2015

Giả sử b khác 0 => \(\sqrt{p}=-\frac{a}{b}\)

p là số nguyên tố nên \(\sqrt{p}\) là số vô tỉ

a; b là số hữu tỉ nên \(-\frac{a}{b}\) là số hữu tỉ

=> Vô lý=> b = 0 => a = 0 => đpcm

29 tháng 6 2015

p là số nguyên tố=>\(\sqrt{p}\)là số vô tỉ

=>b\(\sqrt{p}\) là số vô tỉ nếu b khác 0 hoặc b\(\sqrt{p}\)=0 nếu b=0

=>a+b\(\sqrt{p}\)=0

*)b khác 0 =>a=-b\(\sqrt{p}\)

mà a là số hữ tỉ b\(\sqrt{p}\) là số vô tỉ(L)

*)b=0=>b\(\sqrt{p}\)=0=>a+0=0

=>a=0

Vậy a=b=0

10 tháng 8 2016

a, Tích của 2 số hữu tỉ 

\(\frac{7}{20}\cdot\left(-1\right)=-\frac{7}{20}\)

b, Thương của 2 số hữu tỉ

\(1:-\frac{20}{7}=1\cdot-\frac{7}{20}=-\frac{7}{20}\)

c, Tổng của 1 số hữu tỉ dương và 1 số hữu tỉ âm

\(\frac{3}{5}+\frac{-19}{20}=\frac{12}{20}+\frac{-19}{20}=-\frac{7}{20}\)

d, Tổng của 2 số hữu tỉ âm trong đó 1 số là - 1/5

\(-\frac{1}{5}+\frac{-3}{20}=\frac{-4}{20}+\frac{-3}{20}=-\frac{7}{20}\)