\(ax^2+bx+c\) =0 với mọi giá trị x . Cm a =b=c=0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2023

Vì  \(P\left(x\right)=ax^2+bx+c=0\forall x\) nên cho \(x=0\)

\(\Leftrightarrow a.0^2+b.0+c=0\)

\(\Rightarrow a=b=c=0\left(dpcm\right)\)

23 tháng 5 2018

Ta có : đa thức M = 0 với mọi x

Ta cho x nhận các giá trị x = 0, x = 1, x = -1

Ta có : c = 0, a + b + c = 0 , a - b + c = 0

Do đó : a + b = 0 và a - b = 0

nên a + b + a - b = 0 , suy ra : 2a = 0 \(\Rightarrow\)a = 0 . Ta có : b = 0

Vậy a = b = c = 0

23 tháng 3 2018

Có: \(M\left(0\right)=a.0^2+b.0+c=c=0\)

      \(M\left(1\right)=a.1^2+b.1+c=a+b+c=0\)

      \(M\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c=0\)

\(M\left(1\right)-M\left(-1\right)=a+b+c-\left(a-b+c\right)\)

\(=a+b+c-a+b-c=2b=0\)

=> \(b=0\)

=> \(a+b+c=a+0+0=a=0\)

Vậy \(a=b=c=0\)

20 tháng 3 2018

M(x)=\(^{ax^2}\)+bx+c

➜M(0)=a.\(^{0^2}\)+b.0+c

➜M(0)=0+0+c➜M(0)=c

20 tháng 3 2018

\(M\left(x\right)=0\forall x\)

+) \(M\left(0\right)=0\Leftrightarrow a.0^2+b.0+c=0\)

\(\Leftrightarrow c=0\)

+) \(M\left(1\right)=0\Leftrightarrow a.1^2+b.1+c=0\)

\(\Leftrightarrow a+b+c=0\)

\(\Leftrightarrow a+b=0\left(c=0\right)\) \(\left(1\right)\)

+) \(M=\left(-1\right)\Leftrightarrow a.\left(-1\right)^2+b.\left(-1\right)+c=0\)

\(\Leftrightarrow a-b+c=0\)

\(\Leftrightarrow a-b=0\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\left(a+b\right)+\left(a-b\right)=0\)

\(\Leftrightarrow2a=0\)

\(\Leftrightarrow a=0\)

\(\Leftrightarrow b=0\)

Vậy \(a=b=c=0\)

1 tháng 3 2018

P ( x ) = ax^3 + bx^2 + cx + d 

Ta có : P( 0 ) chia hết cho 5 

P ( 0 ) = a . 0 + b . 0 + c. 0 + d = d chia hết cho 5 

P ( 1 ) chia hết cho 5

P ( 1 ) = a . 1^3 + b . 1^2 + c . 1 + d = a + b + c + d chia hết cho 5  ( 1 ) 

mà d chia hết cho 5 => a + b + c chia hết cho 5 

P ( - 1 ) = a . ( -1)^3 + b . ( -1)^2 + c . - 1 + d 

           =       -a + b - c + d ( 2 ) 

Từ ( 1 ) và ( 2 ) : 

P ( 1 ) + P ( -1 ) = a + b + c + d  +  -a + b - c + d 

                        =     2b + 2d chia hết cho 5 

mà 2d chia hết cho 5 => 2b chia hết cho 5 => b chia hết cho 5 => a + c chia hết cho 5 => 2(a + c ) chia hết cho 5 

P ( 2 ) = a . 2^3 + b . 2^2 + c. 2 + d

          =  8a + 2b + 2c + d 

          =  2a + 6a + 2b + 2c + d 

          = 2 ( a + c ) + 6a + 2b + d chia hết cho 5 

Mà 2 ( a + c ) chia hết cho 5 , 2b chia hết cho 5 , d chia hết cho 5

=> 6a chia hết cho 5

=>   a chia hết cho 5

Mà a + c chia hết cho 5 => c chia hết cho 5

Vậy a, b , c , d chia hết cho 5

mình nha !!! 
Học giỏi !!! 

27 tháng 5 2016

a,Q(2) = 4a+2b+c

Q(-1)=a-b+c

Ta có: Q(2)+Q(-1)= 4a+2b+c+a-b+c=5a+b+2c

mà 5a+b+2c=0 => Q(2)=-Q(-1)

Nên Q(2).Q(-1)\(\le\)0

 

28 tháng 5 2016

Vì Q(x)=0 với mọi x nên ta có:

Q(0)= 0.a+b.0+c=0=> c=0(1)

Q(1)= a+b+c=0 mà c=0 => a+b=0(2)

Q(-1)=a-b+c=0 mà c=0 => a-b=0(3)

từ (1) và (2) => a=b=c=0 khi Q(x)=0 với mọi x

7 tháng 8 2018

http://123link.pro/1VmdhZJ

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

a) Ta có : \(Q\left(2\right)=4a+2b+c\)

\(Q\left(-1\right)=a-b+c\)

\(\Rightarrow Q\left(2\right)+Q\left(-1\right)=5a+b+2c=0\)

\(\Rightarrow Q\left(2\right)=-Q\left(-1\right)\)

\(\Rightarrow Q\left(2\right).Q\left(-1\right)\le0\)

b) Vì \(Q\left(x\right)=0\) với mọi $x$

$\to Q(0) = c=0$

$Q(1) = a+b+c=a+b=0$ $(1)$

$Q(-1) = a-b +c = a-b=0$ $(2)$

Từ $(1)$ và $(2)$ $\to a=b=c=0$