\(\ge\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2018

ta có: 2a + b  = 0

\(\Rightarrow2a=-b\Rightarrow a=\frac{-b}{2}\)

ta có: \(P_{\left(-1\right)}=a.\left(-1\right)^2+b.\left(-1\right)+c\)

\(P_{\left(-1\right)}=a-b+c\)

thay số: \(P_{\left(-1\right)}=\frac{-b}{2}-b+c\)

\(P_{\left(-1\right)}=\frac{-b}{2}-\frac{2b}{2}+c=\frac{-b-2b}{2}+c\)

\(P_{\left(-1\right)}=\frac{-3b}{2}+c\)

ta có: \(P_{\left(3\right)}=a.3^2+b.3+c\)

\(P_{\left(3\right)}=a9+3b+c\)

thay số: \(P_{\left(3\right)}=\frac{-b}{2}.9+3b+c\)

\(P_{\left(3\right)}=\frac{-9b}{2}+\frac{6b}{2}+c\)

\(P_{\left(3\right)}=\frac{-9b+6b}{2}+c\)

\(P_{\left(3\right)}=\frac{-3b}{2}+c\)

\(\Rightarrow P_{\left(-1\right)}.P_{\left(3\right)}=\left(\frac{-3b}{2}+c\right).\left(\frac{-3b}{2}+c\right)\)

\(P_{\left(-1\right)}.P_{\left(3\right)}=\left(\frac{-3b}{2}+c\right)^2\ge0\)

\(\Rightarrow P_{\left(-1\right)}.P_{\left(3\right)}\ge0\left(đpcm\right)\)

28 tháng 5 2018

Ta có : 

\(P\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(3\right)=a.3^2+b.3+c\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(3\right)=9a+3b+c\end{cases}}\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=\left(9a+3b+c\right)-\left(a-b+c\right)\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=9a+3b+c-a+b-c\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=8a+4b\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=4\left(2a+b\right)\)

Mà \(2a+b=0\Rightarrow4\left(2a+b\right)=0\Rightarrow P\left(3\right)-P\left(-1\right)=0\Rightarrow P\left(3\right)=P\left(-1\right)\)

Nên : 

\(P\left(3\right).P\left(-1\right)=P\left(-1\right).P\left(-1\right)=\left[P\left(-1\right)\right]^2\ge0\)

\(\Rightarrow P\left(3\right).P\left(-1\right)\ge0\left(Đpcm\right)\)

P/s : Đúng nha 

AH
Akai Haruma
Giáo viên
29 tháng 4 2018

Lời giải:

Ta có:

\(P(x)=ax^2+bx+c\)

\(\Rightarrow \left\{\begin{matrix} P(-1)=a-b+c\\ P(3)=9a+3b+c\end{matrix}\right.\)

Suy ra: \(P(3)-P(-1)=9a+3b+c-(a-b+c)\)

\(=8a+4b=4(2a+b)=0\)

\(\Rightarrow P(3)=P(-1)\)

\(\Rightarrow P(-1)P(3)=[P(3)]^2\geq 0\)

Ta có đpcm.

2 tháng 5 2018

2a+b=0=>b=-2a

p(x)=ax^2 -2ax+c

p(-1)=a(-1)^2-2a(-1)+c=3a+c

p(3)=9a-6a+c=3a+c

p(-1).p(3)=(3a+c)^2 >=0=>dpcm

29 tháng 8 2018

Ta có:

\(P\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c\)

\(\Rightarrow P\left(-1\right)=a-b+c\)

\(P\left(3\right)=a.3^2+b.3+c\)

\(\Rightarrow P\left(3\right)=9a+3b+c\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=9a+3b+c-a+b-c\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=8a+4b\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=4\left(2a+b\right)\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=0\)

\(\Rightarrow P\left(3\right)=P\left(-1\right)\)

\(\Rightarrow P\left(-1\right).P\left(3\right)=P\left(3\right)^2\)

\(P\left(3\right)^2\ge0\)

\(\Rightarrow P\left(-1\right).P\left(3\right)\ge0\)

26 tháng 4 2018

ai làm hộ mình cái mình k cho

28 tháng 5 2018

mk thấy đề bài của bn sai rồi 

14 tháng 6 2021

2a+b=0 ⇒ b=-2a

P(-1)=a(-1)2+(-2a).(-1)+c

        =a+2a+c

        =3a+c

P(3)=a.32+(-2a).3+c

       =9a-6a+c

       =3a+c

P(-1).P(3)

=(3a+c).(3a+c)

=(3a+c)2

Vì (3a+c)2≥0

⇒P(-1).P(3)≥0

4 tháng 5 2018

Có: \(\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(3\right)=9a+3b+c\end{cases}}\)

\(\Rightarrow P\left(-1\right).P\left(3\right)=\left(a-b+c\right).\left(9a+3b+c\right)\)

\(=\left(a-b+c\right)\left[4\left(2a+b\right)+a-b+c\right]\)

\(=\left(a-b+c\right)\left(a-b+c\right)\)

\(=\left(a+b-c\right)^2\ge0\left(ĐPCM\right)\)

16 tháng 6 2020

Với \(P\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=a-b+c\)

\(P\left(3\right)=a3^2+3b+c=9a+3b+c\)

từ đó suy ra \(P\left(-1\right).P\left(3\right)=\left(a-b+c\right)\left(9a+3b+c\right)\)

\(=\left(a-b+c\right)\left[\left(8a+4b\right)+a-b+c\right]\)

\(=\left(a-b+c\right)\left[4\left(2a+b\right)+a-b+c\right]\)

\(=\left(a-b+c\right)\left(a-b+c\right)=\left(a-b+c\right)^2\ge\)(đpcm)

6 tháng 5 2019

Ta có: 2a+b=0
b=0-2a
->b=-2a
P(-1).P(3)=(a.(-1)^2+b.(-1)+c).(a.3^2+b.3+c)
p(-1).P(3)=(a-b+c).(9a+3b+c)
P(-1).P(3)=(a+2a+c).(9a+3.(-2a)+c)
=3a+c).(-54a+c)
=(3-54).(a+c)
=-51a+c
đến đây tắc tịt r =))))))))

7 tháng 8 2018

http://123link.pro/1VmdhZJ

7 tháng 5 2015

Tính H(-1) = a.(-1)2 + b.(-1) + c = a - b + c

H(-2) = a.(-2)2 + b.(-2) + c = 4a - 2b + c

=> H(-1) + H(-2) = 5a - 3b + 2c = 0 

=> H(-1) = - H(-2)

=> H(-1) . H(-2) = [- H(-2)].h(-2) = - H2(-2) \(\le\) 0 Vì H2(-2) \(\ge\) 0

=> ĐPCM

29 tháng 6 2020

Ta có \(H\left(-1\right)=a-b+c;H\left(-2\right)=4a-2b+c\)

\(\Rightarrow H\left(-1\right)+H\left(-2\right)=a-b+c+4a-2b+c=5a-3b+2c=0\left(1\right)\)

\(\Rightarrow H\left(-1\right)=-H\left(-2\right)\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow H\left(-1\right)\cdot H\left(-2\right)=-H\left(-2\right)\cdot H\left(-2\right)=-\left[H\left(-2\right)\right]^2=\le0\)