\(\g...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2018

Ta có : 

\(P\left(x\right)=ax+b\)

\(\Rightarrow\hept{\begin{cases}P\left(2018\right)=a.2018+b\\P\left(1\right)=a.1+b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}P\left(2018\right)=2018a+b\\P\left(1\right)=a+b\end{cases}}\)

\(\Rightarrow P\left(2018\right)-P\left(1\right)=2018a+b-\left(a+b\right)\)

\(\Rightarrow P\left(2018\right)-P\left(1\right)=2017a\)

\(\Rightarrow\left|P\left(2018\right)-P\left(1\right)\right|=\left|2017a\right|\)

Do a khác 0 

\(\Rightarrow\left|2017a\right|\ge2017\)

\(\Rightarrow\left|P\left(2018\right)-P\left(1\right)\right|\ge2017\)

Vậy \(\left|P\left(2018\right)-P\left(1\right)\right|\ge2017\left(đpcm\right)\)

7 tháng 5 2019

Ta có: P(2019) = 2019a + b

       P(1) = a + b

Khi đó, ta có: |P(2019) - P(1)| = |(2019a + b) - (a + b)| = |2019a + b - a - b| = |2018a| 

Vì a \(\ne\)0 => |2018a| \(\ne\)0 => |2018a| \(\ge\)2018

Vậy |P(2019) - P(1)| \(\ge\)2018

7 tháng 8 2018

http://123link.pro/1VmdhZJ

AH
Akai Haruma
Giáo viên
29 tháng 4 2018

Lời giải:

Ta có:

\(P(x)=ax^2+bx+c\)

\(\Rightarrow \left\{\begin{matrix} P(-1)=a-b+c\\ P(3)=9a+3b+c\end{matrix}\right.\)

Suy ra: \(P(3)-P(-1)=9a+3b+c-(a-b+c)\)

\(=8a+4b=4(2a+b)=0\)

\(\Rightarrow P(3)=P(-1)\)

\(\Rightarrow P(-1)P(3)=[P(3)]^2\geq 0\)

Ta có đpcm.

2 tháng 5 2018

2a+b=0=>b=-2a

p(x)=ax^2 -2ax+c

p(-1)=a(-1)^2-2a(-1)+c=3a+c

p(3)=9a-6a+c=3a+c

p(-1).p(3)=(3a+c)^2 >=0=>dpcm

6 tháng 4 2018

kho qua !

2 tháng 9 2017

 Xét 3 TH : 
1) a < b 
Khi đó ta có ab + 2009a < ab + 2009b hay a(b+2009) < b(a+2009) 
Chia 2 vế cho b(b+2009) ta được a/b < (a+2009)/(b+2009) 

2) a = b ---> a/b = (a+2009)/(b+2009) = 1 

3) a > b 
Khi đó ta có ab + 2009a > ab + 2009b hay a(b+2009) > b(a+2009) 
Chia 2 vế cho b(b+2009) ta được a/b > (a+2009)/(b+2009) 

Tóm lại 
a/b < (a+2009)/(b+2009) nếu a < b 
a/b = (a+2009)/(b+2009) nếu a = b 
a/b > (a+2009)/(b+2009) nếu a > b

28 tháng 5 2018

ta có: 2a + b  = 0

\(\Rightarrow2a=-b\Rightarrow a=\frac{-b}{2}\)

ta có: \(P_{\left(-1\right)}=a.\left(-1\right)^2+b.\left(-1\right)+c\)

\(P_{\left(-1\right)}=a-b+c\)

thay số: \(P_{\left(-1\right)}=\frac{-b}{2}-b+c\)

\(P_{\left(-1\right)}=\frac{-b}{2}-\frac{2b}{2}+c=\frac{-b-2b}{2}+c\)

\(P_{\left(-1\right)}=\frac{-3b}{2}+c\)

ta có: \(P_{\left(3\right)}=a.3^2+b.3+c\)

\(P_{\left(3\right)}=a9+3b+c\)

thay số: \(P_{\left(3\right)}=\frac{-b}{2}.9+3b+c\)

\(P_{\left(3\right)}=\frac{-9b}{2}+\frac{6b}{2}+c\)

\(P_{\left(3\right)}=\frac{-9b+6b}{2}+c\)

\(P_{\left(3\right)}=\frac{-3b}{2}+c\)

\(\Rightarrow P_{\left(-1\right)}.P_{\left(3\right)}=\left(\frac{-3b}{2}+c\right).\left(\frac{-3b}{2}+c\right)\)

\(P_{\left(-1\right)}.P_{\left(3\right)}=\left(\frac{-3b}{2}+c\right)^2\ge0\)

\(\Rightarrow P_{\left(-1\right)}.P_{\left(3\right)}\ge0\left(đpcm\right)\)

28 tháng 5 2018

Ta có : 

\(P\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(3\right)=a.3^2+b.3+c\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(3\right)=9a+3b+c\end{cases}}\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=\left(9a+3b+c\right)-\left(a-b+c\right)\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=9a+3b+c-a+b-c\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=8a+4b\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=4\left(2a+b\right)\)

Mà \(2a+b=0\Rightarrow4\left(2a+b\right)=0\Rightarrow P\left(3\right)-P\left(-1\right)=0\Rightarrow P\left(3\right)=P\left(-1\right)\)

Nên : 

\(P\left(3\right).P\left(-1\right)=P\left(-1\right).P\left(-1\right)=\left[P\left(-1\right)\right]^2\ge0\)

\(\Rightarrow P\left(3\right).P\left(-1\right)\ge0\left(Đpcm\right)\)

P/s : Đúng nha