Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 2f(x)-x.f(1/x)=x^2
Với x=2 => 2f(2)-2.f(1/2)=4 (1)
Với x=1/2 => 2 . f(1/2)- 1/2 f(2) = (1/2)^2
=> 2 .f(1/2) -1/2f(2)=1/4(2)
lấy (2)+(1) ta được 3/2 f(2)=17/4 => f(2)=17/6
Tính f(1/3) làm tương tự thay x=3 và 1/3
T ic k nha
A=\( {1 \over 2}\)y.4x2y4+3x4y5
=2x2y5+3x4y5
ta có gt=>x=2;y=-1
thay vào đc A=56
Để P(x)=Q(x) thì:\(3x^3+x^2-3x-1=-3x^3-x^2-x-15\)
Nếu \(3x^3+x^2-3x-1=-3x^3-x^2-x-15\)
=>\(\left(3x^3+x^2-3x-1\right)-\left(-3x^3-x^2-x-15\right)=0\)
=>\(3x^3+x^2-3x-1+3x^3+x^2+x+15=0\)
=>\(\left(3x^3+3x^3\right)+\left(x^2+x^2\right)+\left(-3x+x\right)+\left(-1+15\right)=0\)
=>\(6x^3+2x^2-2x+14=0\)
=>\(6x^3+2x^2-2x=-14\)
Câu 1: Tìm nghiệm của các đa thức:
1. P(x) = 2x -3
⇒2x-3=0
↔2x=3
↔x=\(\frac{3}{2}\)
2. Q(x) = −12−12x + 5
↔-12-12x+5=0
↔-12x=0+12-5
↔-12x=7
↔x=\(\frac{7}{-12}\)
3. R(x) = 2323x + 1515
↔2323x+1515=0
↔2323x=-1515
↔x=\(\frac{-1515}{2323}\)
4. A(x) = 1313x + 1
↔1313x + 1=0
↔1313x=-1
↔x=\(\frac{-1}{1313}\)
5. B(x) = −34−34x + 1313
↔−34−34x + 1313=0
↔-34x=0+34-1313
↔-34x=-1279
↔x=\(\frac{1279}{34}\)
Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4
Giải :cho x2 - 6x + 8 là f(x)
có:f(2)=22 - 6.2 + 8
=4-12+8
=0⇒x=2 là nghiệm của f(x)
có:f(4)=42 - 6.4 + 8
=16-24+8
=0⇒x=4 là nghiệm của f(x)
Câu 3: Tìm nghiệm của các đa thức sau:
1.⇒ (2x - 4) (x + 1)=0
↔2x-4=0⇒2x=4⇒x=2
x+1=0⇒x=-1
-kết luận:x=2 vàx=-1 là nghiệm của A(x)
2. ⇒(-5x + 2) (x-7)=0
↔-5x + 2=0⇒-5x=-2⇒
x-7=0⇒x=7
-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)
3.⇒ (4x - 1) (2x + 3)=0
⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)
2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)
-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)
4. ⇒ x2- 5x=0
↔x.x-5.x=0
↔x.(x-5)=0
↔x=0
x-5=0⇒x=5
-kết luận:x=0 và x=5 là nghiệm của D(x)
5. ⇒-4x2 + 8x=0
↔-4.x.x+8.x=0
⇒x.(-4x+x)=0
⇒x=0
-4x+x=0⇒-3x=0⇒x=0
-kết luận:x=0 là nghiệm của E(x)
Câu 4: Tính giá trị của:
1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2
-X=1⇒f(x) =4
-X=0⇒f(x) =7
-X=2⇒f(x) =89
2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2
-X=-1⇒G(x) =-14
-X=0⇒G(x) =2
-X=1⇒G(x) =20
-X=2⇒G(x) =43
P(x) = 3x4 + x3 - 2x2 + x2 - 1/4x
Bậc: 4
Hệ số cao nhất: 3
Hệ số tự do: không có :v
Q(x) = 3x4 - 4x3 + 3x2 - 2x2 - 1/4
Bậc: 4
Hệ số cao nhất: 4
Hệ số tự do: 1/4
a) P(x) + Q(x) = 3x4 + x3 - 2x2 + x2 - 1/4x + 3x4 - 4x3 + 3x2 - 2x2 - 1/4
= (3x4 + 3x4) + (x3 - 4x3) + (-2x2 + x2 + 3x2 - 2x2) - 1/4x - 1/4
= 6x4 - 3x3 - 1/4x - 1/4
P(x) - Q(x) = (3x4 + x3 - 2x2 + x2 - 1/4x) - (3x4 - 4x3 + 3x2 - 2x2 - 1/4)
= 3x4 + x3 - 2x2 + x2 - 1/4x - 3x4 + 4x3 - 3x2 + 2x2 + 1/4
= (3x4 - 3x4) + (x3 + 4x3) + (-2x2 + x2 - 3x2 - 2x2) - 1/4x + 1/4
= 5x3 - 2x2 - 1/4x + 1/4
Q(x) - P(x) = (3x4 - 4x3 + 3x2 - 2x2 - 1/4) - (3x4 + x3 - 2x2 + x2 - 1/4x)
= 3x4 - 4x3 + 3x2 - 2x2 - 1/4 - 3x4 - x3 + 2x2 - x2 + 1/4x
= (3x4 - 3x4) + (-4x3 - x3) + (3x2 - 2x2 + 2x2 - x2) + 1/4 + 1/4x
= -5x3 + 2x2 - 1/4 + 1/4x
b) M(x) = P(x) - Q(x)
= 5x3 - 2x2 - 1/4x + 1/4
M(-2) = 5.(-2)3 - 2.(-2)2 - 1/4.(-2) + 1/4
= -40 - 8 + 1/2 + 1/4
= -189/4
sai đâu sửa hộ nha
a) \(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\\= (x^3+x^2y-2x^2)-(xy+y^2-2y)+(x+y-2)+2019\\=x^2(x+y-2)-y(x+y-2)+(x+y-2)+2019\\=x^2.0-y.0+0+2019=2019\)
c) +) Với \(x + y + z = 0\) thì \(P = \dfrac{y+x}{y} \cdot \dfrac{z+y}z \cdot \dfrac{x + z}x = \dfrac{(-z)}{y} \cdot \dfrac{(-x)}z \cdot \dfrac{(-y)}x = -1\)
+) Với \(x + y + z \ne 0\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{y+z-x}x = \dfrac{z+x-y}y = \dfrac{x+y-z}z = \dfrac{y+z-x+z+x-y+x+y-z}{x+y+z} = \dfrac{x+y+z}{x+y+z} =1\)
Ta có \(\dfrac{y+z-x}x = 1 \iff y+z-x = x \iff y+z = 2x\)
Tương tự : \(z+x = 2y ; x + y = 2z\)
Kh đó \(P = \dfrac{y+x}{y} \cdot \dfrac{z+y}z \cdot \dfrac{x + z}x = \dfrac{2z}{y} \cdot \dfrac{2x}z \cdot \dfrac{2y}x = 8\)
Ta có \(P\left(-1\right)=8\left(-1\right)^2-m^2\left(-1\right)-5m=8+m^2-5m\)
\(Q\left(-2\right)=\frac{3m}{2}-\left(-2\right)^3=\frac{3m}{2}+8\)
\(8+m^2-5m=\frac{3m}{2}+8\)
\(\Rightarrow m^2-5m=\frac{3m}{2}\)
\(\Rightarrow m^2=\frac{3m}{2}+5m=\frac{3m}{2}+\frac{10m}{2}=\frac{13m}{2}\)
\(\Rightarrow2m^2=13m\Rightarrow\frac{2m^2}{m}=\frac{13m}{m}\)
\(\Rightarrow2m=13\Rightarrow m=\frac{13}{2}\)