\(P\text{(}x\text{) }\text{= }x^3-a^2.x+2016b\) với a,b là số nguyên va...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

Thử nha :33

Do a không chia hết cho 3 nên \(\orbr{\begin{cases}a=3k+1\\a=3k+2\end{cases}\left(k\inℤ\right)}\)

Với \(a=3k+1\) thì : \(P\left(x\right)=x^3-\left(3k+1\right)^2.x+2016b\)

\(=x^3-9k^2x-6k-x+2016b\)

\(=x\left(x-1\right)\left(x+1\right)-9k^2x-6kx+2016b⋮3\)

Với \(a=3k+2\) thi \(P\left(x\right)=x^3-\left(3k+2\right)^2.x+2016b\)

\(=x^3-9k^2x-12kx-4x+2016b\)

\(=x\left(x^2-4\right)-9k^2x-12kx+2016b\)

\(=\left(x-2\right)x\left(x+2\right)-9k^2x-12kx+2016b⋮3\)

Vậy ta có điều phải chứng minh.

27 tháng 1 2016

bài................khó...............quá....................mà...............trời...........lại...............rét................tick..................ủng..............hộ.................mình.................nha.............

27 tháng 1 2016

sao bat chuoc tao ha NGuyen ding anh

22 tháng 4 2017

mk thấy bn nên xem lại đề đi. nếu n=1 thì \(6^{2n}+19^n-2^{n+1}\) ko chia hết cho 17

9 tháng 7 2017

62n+19n-2n+1=36n+19n-2n2=(36n-2n)+(19n-2n)=34k+17j chia het 17

vay bt chia het 17

Bài 1:

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)

30 tháng 12 2017

:3 Đây. Bạn sử dụng đồng dư nha

Theo đề bài ta có đồng dư thức như sau:

\(a+1\equiv6\)(mod 6) \(\Rightarrow a\equiv5\)(mod 6)

\(b+2007\equiv2010\)(mod 6) \(\Rightarrow b\equiv3\)(mod 6)

ta có

\(4^a\equiv4^5\)(mod 6)

Suy ra: Ta có đồng dư thức

\(4^a+a+b\equiv4^5+5+3\)(mod 6)

Suy ra \(4^a+a+b\equiv1024+5+3\equiv1032\)(mod 6)

Mà \(1032⋮6\)nên \(\left(4^a+a+b\right)⋮6\)

Vậy \(4^a+a+b\)chia hết cho 6 (ĐPCM)