\(P\left(x\right)=x^4+ax^3+bx^2+cx+d\)biết P(1)=1; P(2)=4; P(3)=7; P(4)= 10...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

Câu a :

Theo giả thiết bài ra ta có hệ phương trình :

\(\left\{{}\begin{matrix}P\left(1\right)=1^4+a.1^3+b.1^2+c.1+d=1\\P\left(2\right)=2^4+a.2^3+b.2^2+c.2+d=4\\P\left(3\right)=3^4+a.3^3+b.3^2+c.3+d=7\\P\left(4\right)=4^4+a.4^3+b.4^2+c.4+d=10\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b+c+d=0\\8a+4b+2c+d=-12\\27a+9b+3c+d=-74\\64a+16b+4c+d=-246\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-7a-3b-c=12\\-26a-8b-2c=74\\-63a-15b-3c=246\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=-10\\b=35\\c=-47\\d=0-\left(-10+35-47\right)=22\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-10\\b=35\\c=-47\\d=22\end{matrix}\right.\)

1 tháng 10 2017

Câu b ạ

17 tháng 10 2017

Casio hả bạn

24 tháng 8 2020

Biến đổi về dạng   \(\left(x-\sqrt{2}\right)^3=2\)

 \(\Leftrightarrow x^3-3x^2\cdot\sqrt{2}+6x-2\sqrt{2}=2\)  

     \(\Leftrightarrow x^3+6x-2=\left(3x^2+2\right)\cdot\sqrt{2}\)

           \(\Leftrightarrow\left(x^3+6x-2\right)^2=2\left(3x^2+2\right)^2\)Rút gọn ta được \(x^6-6x^4-4x^3+12x^2-24x-4=0\)

Vậy đa thức cần tìm là    \(x^6-6x^4-4x^3+12x^2-24x-4\)

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho 

NV
4 tháng 6 2019

\(f\left(1+\sqrt{2}\right)=2019\Rightarrow a\left(1+\sqrt{2}\right)^2+b\left(1+\sqrt{2}\right)+2018=2019\)

\(\Leftrightarrow a\left(3+2\sqrt{2}\right)+b\left(1+\sqrt{2}\right)=1\)

\(\Leftrightarrow3a+2a\sqrt{2}+b+b\sqrt{2}=1\)

\(\Leftrightarrow\left(2a+b\right)\sqrt{2}=1-3a-b\)

Do vế phải là số hữu tỉ nên vế trái hữu tỉ, mà \(\sqrt{2}\) vô tỉ nên vế phải hữu tỉ khi và chỉ khi \(2a+b=0\)

\(\Rightarrow\left\{{}\begin{matrix}2a+b=0\\1-3a-b=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2a+b=0\\3a+b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-2\end{matrix}\right.\)

28 tháng 10 2014

xin lỗi em mới lớp 8 ko trả lời dc